# Inf2 - Foundations of Data Science: Multiple logistic regression for explanation and prediction



# THE UNIVERSITY of EDINBURGH informatics

#### FOUNDATIONS OF DATA SCIENCE

#### Announcements

- Week 4 workshop - we'll look at the paper that we'll be refer to in the exam

- Uses concepts from today's lecture!
- Solutions for Week 3 Workshop now available
- Solutions for this Week 4 Workshop will be available later in the week
- Badges on order!

#### Where we're at in the Maximum Likelihood Principle and Regression

Week 4: Logistic regression

Week 5: The maximum likelihood principle, and how we can use it to derive linear, logistic and other types of regression

### Today

- Recap
- Multiple Logistic Regression
- Confidence intervals on coefficients
- Machine learing: Logistic Regression as a classifier
- Ethics of logistic regression

Probability and log odds views of logistic regression



Odds and log odds views of logistic regression



$$P(\gamma = y | X = z)$$

| Binary variables: odds and odds ratios                          |                                                     |  |  |  |  |
|-----------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
| $P(\gamma = y \mid X = z)$                                      | App 1 • • •<br>• • •<br>· · · · · · · · · · · · · · |  |  |  |  |
| Approved Not approved Approval odds<br>Employed                 | OR(x) = 2.42                                        |  |  |  |  |
| 0 p 0.25 p 0.75 p 0.34<br>1 0.71 0.29 2.42                      | $\int = 7.09$<br>Effect size                        |  |  |  |  |
| y E { "Not approved", "Approved"}<br>x E { 'Not Emp. ", "Emp."} | 669 0/2                                             |  |  |  |  |
| Odds (Sucress) = P(Success)<br>P(failure)                       | $= \frac{P(Sucress)}{1 - P(Sucress)}$               |  |  |  |  |
| Odds ratio OR(x) - Odds (Success<br>Odds (Succe                 | x = True)<br> x = False)                            |  |  |  |  |

# Inf2 – Foundations of Data Science: Multiple logistic regression



# THE UNIVERSITY of EDINBURGH informatics

#### FOUNDATIONS OF DATA SCIENCE

#### Supervised classification



https://archive.ics.uci.edu/dataset/27/credit+approval

#### Principle of multiple logistic regression

Predictor variables 
$$x^{(1)}$$
: Age  
 $x^{(2)}$ : Employment

$$P(\gamma = | | x^{(1)}, x^{(2)}, ...)$$
  
=  $f(\hat{\beta}_0 + \hat{\beta}_1 x^{(1)} + \hat{\beta}_2 x^{(2)} + ...)$   
$$\bigwedge_{\text{logistric}}$$

Multiple logistic regression applied to the credit example

|                                           | Variable                     | Coefficient              | Odds or OR              | e <sup>B</sup> o                                                         |
|-------------------------------------------|------------------------------|--------------------------|-------------------------|--------------------------------------------------------------------------|
| $\hat{eta}_0 \ \hat{eta}_1 \ \hat{eta}_2$ | Intercept<br>Age<br>Employed | -1.969<br>0.029<br>1.881 | 0.140<br>1.030<br>6.562 | 2  Odds<br>$= \text{OR } e^{\text{R}}$<br>$= \text{OR } e^{\frac{3}{2}}$ |
|                                           |                              | n<br>log odde<br>logits  | 5                       | •                                                                        |

#### Boostrap confidence intervals for regression coefficients



#### Demo

#### Code this for Logistic Regression in the lab!

#### Bootstrap confidence intervals



Does age affect credit approval? Ho: age does not affect credit approval =7 e<sup>β</sup>=1 Ha: age does affect credit approval

#### **Discussion question**

Our analysis so far shows that age and credit approval are related.

So all other things being equal, a 20 year old is less likely to have credit approved than a 50 year old.

Do we believe this yet? What further analysis should we do?



#### Explanation - "controlling for", "adjusting for"



#### This week's lab

Multiple logistic regression on fuller set of variables

Using Logsitic Regression as a Machine Learning algorithm

#### Controlling for variables in the news: 5 February 2025



#### School phone bans don't boost grades or wellbeing, study suggests



Alice Evans

**BBC** News

School phone policies and their association with mental wellbeing, phone use, and social media use (SMART Schools): a cross-sectional observational study

Multimedia

Events

About

Victoria A. Goodyear 🙁 a,b 🖾 • Amie Randhawa a,b • Péymane Adab <sup>c</sup> • Hareth Al-Janabi <sup>b,c</sup> • Sally Fenton <sup>a,d</sup> • Kirsty Jones <sup>e</sup>

Global health

Clinical

• et al. Show more

# Inf2 - Foundations of Data Science: The logistic regression classifier



# THE UNIVERSITY of EDINBURGH informatics

#### FOUNDATIONS OF DATA SCIENCE

#### Converting logistic regression to a classifier

- Fit logistic regression model to data
- Set threshold in terms of log odds and apply to predicted log odds

$$\hat{\beta}_{0} + \hat{\beta}_{1} \chi^{(1)} + \hat{\beta}_{2} \chi^{(2)} + \dots \quad \mathcal{F}_{C} \implies \hat{y} = 1$$

$$\hat{\beta}_{0} + \hat{\beta}_{1} \chi^{(1)} + \hat{\beta}_{2} \chi^{(2)} + \dots \quad \langle c \implies \hat{y} = 0$$

C = 0 = 7 odds of 1 = 7 p = 0.5

# Machine learning trick: make marginal distributions more normal



#### **Decision boundary**



#### Ethics: logistic regression can be transparent

Credit scoring system:

- If you are in employment you score 1.625, if not you score 0
- Multiply your age by 0.029 and add the result to your score
- Round your income to the nearest 1000. Multiply the number of zeros in this figure by 0.320 and add the result to your score
- If you scored more than 2.246, your credit will be approved

Cf. "Promote Values of Transparency, Autonomy and Trustworthiness" (Vallor, 2018)

#### Logistic regression versus k-NN



Decision boundary, flexibility/over-fitting, transparency

Standardised input variables



#### Cross validation for predicting metrics



c.f. Chapter 12 of the lecture notes

# Summary - Interpret $\hat{\beta}_{o}$ and $\hat{\beta}_{i}$ , in terms of log odds

- Extend logistic regression to multiple variables
- Use logistic regression as a classifier
- Practiccal and ethical pros and cons of logistic regression versus other methods