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Announcements

- Week 4 workshop - we'll look at the paper that we'll be
refer to in the exam

- Uses concepts from today's lecture!
- Solutions for Week 3 Workshop now available

- Solutions for this Week 4 Workshop will be available
later in the week

- Badges on order!



Where we're at in
the Maximum Likelihood Principle and Regression

Week 4: Logistic regression

Week 5: The maximum likelihood principle, and how
we can use it to derive linear, logistic and other types of
regression



Today

- Recap

- Multiple Logistic Regression

- Confidence intervals on coefficients

- Machine learing: Logistic Regression as a classifier

- Ethics of logistic regression



Probability and log odds views of logistic regression
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Odds and log odds views of logistic regression
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Binary variables: odds and odds ratios
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Supervised classification
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Principle of multiple logistic regression
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Multiple logistic regression applied to the credit example

Variable Coefficient Odds or OR

/§0 Intercept -1.969 0.140
Bi  Age 0.029 1.030

B> Employed 1.881 6.562




Boostrap confidence intervals for regression coefficients
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Bootstrap confidence intervals

B = |oco n- 6353
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Does age affect credit approval?




Discussion question

Our analysis so far RL A

shows that age and ;2;0.5 2 B

credit approval are 00 MRS

related. o 1] A
So all other things < B \\

being equal, a 20 year 10

old is less likely to /\ pooed
have credit approved 00 . U .

than a 50 year old.

Employed
o
(8]

o

CreditScore
N (@]
= (é)]

Do we believe this yet? 0

Income

50000

What further analysis 0 it S R
0 1 0 50 0 1 0 50 0 100000

Should we do? Gender Age Employed CreditScore Income



Explanation - "controlling for", "adjusting for"



This week's lab

Multiple logistic regression on fuller set of variables

Using Logsitic Regression as a Machine Learning algorithm
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Converting logistic regression to a classifier

- Fit logistic regression model to data

- Set threshold  in terms of log odds and apply to
predicted log odds
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Machine learning trick: make marginal distributions more
normal
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Decision boundary
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Ethics: logistic regression can be transparent

Credit scoring system:
e |f you are in employment you score 1.625, if not you score 0
e Multiply your age by 0.029 and add the result to your score
e Round your income to the nearest 1000.

Multiply the number of zeros in this figure by 0.320

and add the result to your score

e |t you scored more than 2.246, your credit will be approved

Cf. "Promote Values of Transparency, Autonomy and
Trustworthiness" (Vallor, 2018)



Logistic regression versus k-NN
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Log (base 10) of Income

(o]

(6]
1

S
1

w
1

N
1

=
1

o

Receiver-operator characteristic

Approved

Age (years)

Sensitivity

Selectivity/
Specificity

False positive
rate




Cross validation for predicting metrics

Run 1 Fold 1 Fold 3
25% 25%
Validate Train

Run 2 Fold 2 Fold 3
25% 25%
Validate Train
Run 3 Fold 3
25%
Validate

c.f. Chapter 12 of the lecture notes

Validation

3. Compute mean and
error 1 o

s.d of validation error
Validation Mean
error 2 validation

error

Validation
error 3



Summary

A
A

- Interpret (®,and P, in terms of log odds

- Extend logistic regression to multiple variables

- Use logistic regression as a classifier

- Practiccal and ethical pros and cons of logistic
regression versus other methods



