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Announcements

Project ideas - due Friday!
- Please contribute on the "Request for projects suggestions' Piazza post

Workshops - hopefully theyve been helpful

Lab



| ast Lecture

1. Parameter
- value of a statistic (e.g. mean or max) in population
- parameter in distribution (e.g. mean, variance of normal)

2. Point estimator
- Method of converting sample into estimate of paramater
- E.g. Mean of sample (5) esttmates mean of population w
N~ ]
3. Point estimator is random variable
- a different random sample from population =>
different value of point estimator
- But we only have one sample, so only one value

4. ldea of confidence intervals for estimator
- based on sample standard error of estimator



Today

1. How to convert inferred sampling distribution of estimator
into a confidence interval with a specified chance of enclosing
true value

2. (@) How to compute a confidence interval for mean of large sample
- z distribution
(b) How to calculate a confidence interval for mean of a small sample from a
fairly normal distribution
- t distribution

3. Choosing confidence levels and how much data to collect

4. Confidence intervals of parameters other than the mean
- Bootstrap
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How do we calibrate the width of the confidence

interval so that there is a specified
chance that it encloses the true value?




Theory reminder:
Standard error of the mean for known distribution variance o

Normal Exponential
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Confidence interval of the mean of a sample from a distribution with
unknown mean and known variance
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What we expect for confidence intervals of mean of 100 samples
from normal distribution with mean O and variance 1

95% confidence interval
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p(2)

Determining the width of the interval: z-critical values
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Definition of a confidence interval for a parameter
N
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Rearranging the confidence interval definition so that there is one random variable
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How do we choose a and b for a particular estimator?
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Small sample confidence interval example
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Using the t-distribution to calculate a confidence interval
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Estimated standard error of them mean for distribution with
unknown variance o
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Mean of a large sample

For large samples a—A; S ~
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Confidence interval for the year of a 2p coin

n = L_é Year of minting of 2p coins

e ald il

1970 1980 1990 2000 2010 2020
Year

In a sample of 56 2p coins, the mean year of minting of the 2p
coins is 2000.8 and the sample standard deviation is 10.4. Give a
95% confidence interval for the mean year of minting in the
population of all 2p coins.
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Practice more in next week's workshop sheet



Solution

n:= bp
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Reporting confidence intervals
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Confidence intervals are a random interval

Frequentist interpetation: |f we use the same procedure to create
a lw(| =¥ confidence interval repeatedly, in the long run the confidence

interval will include the true value on g (V= x ) 9, of repetitions

A given interval either does or does not include the true value, but we
don't know, and we shouldn't say it has a o) -x)# chance of including

the true value S0 -
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What level of confidence should we choose?
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Wikimedia commons, Silberwolf, CC BY 2.5

Wikimedia commons, Kiefer, CC BY SA 2.0



How much data do we collect?

A question inspired by the work of "'STUDENT" (aka W. S. Gosset)
ln a brewery

obove this lme 8
4 : Y beer ¢ O bt

By Satirdan kahraman - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=153514719

Suppose we only want 1% of beer to be too bitter
What level of confidence should we have?
How many samples per day should we make?
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Baron Minchhausen - Wikipedia

Principle

of bootstrapping

- Treat

samp
- Samp
to po
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the sample like a

population
- Resample estimator
from it to get

iing distribution
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pulation for a large

KS

Related lab on the
bootstrap



E.g. Japanese restaurant reservation times
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Bootstrap confidence interval for the mean

- \é>

. S
SO(JZ\B—ouJE j=1 j=2 j=3 ..
OC_* o size WL 00155 719 01 =745 001 =720
from Y 200 200 200
. 0 ’ 0 . 0 ;
Wi ‘t\/\ ‘"UP\D‘CGW\C nt 0 50 100 0 50 100 0 50 100

=K
¢ & meon ¥

Distribution of 10000 boostrap means

B 300 - Mean = 8.06
— 2
)L —
Sboab; _Z‘_.\ (-)df:, ”L) 200 80% Cl = [6.97, 9.22]
J=
B\ 100 -

0 T T
(6-46 4 .90) — Y:oo{—;s\w\‘) r® LT 8 F(aa:s) o1, 1
(b %, 1-78) = Nomal «pprox



General formulation of the bootstrap
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Bootstrap mean coin year
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Bootstrap median coin year

Distribution of 10000 boostrap means

3000 - Median = 2001
2500 A 80% Cl = [2000, 2003]

2000 -
1500 -
1000 -
500 -

0 H

1994 1996 1998 2000 2002 2004 2006 2008

~

X" (year)



Summary

1. Principle and meaning of confidence intervals

2. Confidence intervals of the mean of a large samples (n > 40)
computed theoretically
- z distribution

3. Confidence intervals of the mean of a small sample (n < 40) from a fairly
normal distribution computed theoretically
- t distribtion

4. Confidence intervals for more types of estimator
computed using the bootstrap



