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Plan for statistical inference
1. Randomness, sampling and simulations (S2 Week 1)
2. Estimation, including confidence intervals (S2 Week 2)
3. Hypothesis testing (S2 Week 3)
4. A/B testing (S2 Week 3)

Onwards to Logistic regression (S2 Week 4)



Today

1. Principle of hypothesis testing (using statistical simulations)
2. p-values (using statistical simulations)

3. Issues in hypothesis testing

4. Theoretical methods

5. Practical applications

6. Example: testing for goodness of fit to a model
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Inferential statistics tasks: Hypothesis testing

Yes/no questions:

E.g. 1: "lIs Chocolate good for you"

E.g. 2: Is a coin biased? .

E.g. 3: Swain versus Alabama (1965). Is this jury selection procedure biased?
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Statistical simulation versus observations

Simulate unbiased procedures

Compare with observations

Swain vs Alabama
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Method of hypothesis testing

Null hypothesis Hy: Claim initially assumed to be true, formalised
as a statistical model
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formalised as a statistical model

L'j. Hﬁ_’, The Jwr wies ¢ hesen 'Dj ome dher \AV\SPEC(E)‘Q‘&D
V,\((:\,\o&imm(f WaS A vowuble b Blocke Fbaf:(¢]
Qg He “The coun is biast A (ebhwer bruarde hepcls w‘(ml'Ls)

AN Rygedt  or not cged H,




Test procedure

1. Test statistic: e.g. number of black people on a jury panel

t,=& ( observed )

2. Distribution of the test statistic under },

Swain vs Alabama
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3. (a) Kejection reglon
(b) Return a p-value

Tossing unbiased 2p coin
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One-tailed rejection regions

Swain vs Alabama
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H,: Number of tails is
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the number expected by chance

Observation in rejection region => reject, otherwise do not reject

Reject at 5% level?

Reject at 5% level?
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Principle of p-values

Observed data is boundary of rejection region
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Definitions of the p-value

THE AMERICAN STATISTICIAN Faior ik :
2016, VOL. 70, NO. 2,129-133 a‘y or rancis
http://dx.doi.org/10.1080/00031305 2016.1154108 b S ;

EDITORIAL

The ASA's Statement on p-Values: Context, Process, and Purpose

Informally, a p-value is the probability under a specified statistical
model that a statistical summary of the data (e.g., the sample
mean difference between two compared groups) would be equal to
or more extreme than its observed value.

The p-value is the probability, calculated assuming the null
hypothesis is true, of obtaining a value of the test statistic at
least as contradictory to HO as the value calculated from the
available sample.

(Modern Mathematical Statistics with Applications, p. 456)




Question

1. In the hypothetical case of 8 black people on the jury,
which has a p-value of 0.10, is the null hypothesis true?

2. For the coin tossing, is the proability that 2p coins are
unbiased equal to
p=0.738

or

1-p = 02627



What p-values are and are not
(ASA Statement on Statistical Significance and P-values)

P-values can indicate how incompatible the data are with a
specified statistical model.

bw & => high meomp-bbiley =2 Evederce ajand  Ho

P-values do not measure the probability that the studied hypothesis
is true, or the probability that the data were produced by random
chance alone.



Role of hypothesis testing

1. Decide whether a hypothesis or model is compatible with
data from observational studies or randomised experiments

2. Investigate mechanisms specific to data



Question

Suppose you are asked to investigate
if there is a relationship between
BMI (body mass index) and steps walked.

This data visualised apparently shows the
relationship between BMI and steps
walked each day by men and women.

Having seen this visualisation

would you this data to test if there is a
relationship between BMI and number
of steps walked?
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"Statistical significance"
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Q: Why do so many colleges and grad schools teach p=0.05?
A: Becuase that's still what the scientific community and journal editors use

Q: Why to so many people still use p=0.057
A: Becuase that's what they were taught at grad school.

- George Cobb, ASA Statement on p-values




Question

In the coin tossing experiment, imagine that we repeat

the expertiment 1000 times and that we demand statistical
significance at the 0.01 level. Assuming the null hypothesis

ls true (unbiased coin), on how many experiments do we expect

to reject the null hypothesis?



Type | and Type Il Errors

A~ Hs
' >

Type | error: Rejecting Ho when it is true
- control by setting a-size of rejection region

Type Il error: not rejecting Ho when it is false
- more difficult to control for



Proper inference requires full reporting and transparency

- P-values and related analyses should not be reported selectively.

- Conducting multiple analyses of the data and reporting only those with certain
p-values (typically those passing a significance threshold) renders the reported
p-values essentially uninterpretable.

- Cherry-picking promising findings, also known by such terms as
- data dredging,
- significance chasing, significance questing, selective inference,
- and “p-hacking,’
leads to a spurious excess of statistically significant results in the published
literature and should be vigorously avoided. . .

(ASA Statement on Statistical Significance and P-values)



Multiple testing

20 tests at with 5% rejection region
=> (.64 chance of at least one
Type | error

(see end of slides for explanation)
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Determining p-values from probability dists

Binomial distribution
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Normal approximation to the binomial distribution
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z-critical values




P-values computed by various methods
for Swain versus Alabama

to Simulation Binomial Normal

8 0 4.73e-06 2.03e-05
15 0.0067 0.0061 0.0061
20 0.1020 0.1030 0.0857
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Multiple categories

American Civil Liberties Union investigation into
jury selection in Alameda County, CA

Caucasian  Black/AA  Hispanic Asian/Pl  Other  Total

Population % 54 18 12 15 1 100

Observed panel numbers 780 117 114 384 58 1453
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Statistical
tables
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Confidence intervals and p-values
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contain 0, reject Hg that & =o



Dep. Variable:
Model:

Method:

Date:

Time:

No. Observations:
Df Residuals:

Df Model:

Covariance Type:

p-values in Regression output

Least Squares
Wed, 26 Oct 2022
47 Tog-Likelihood: -294.31

Grade

OLS

09:42:

R-squared:
Adj. R-squared:

0.289
0.251

80
75
4

nonrobust

F-statistic:

Prob (F-statistic):

AlC:
BIC:

7.622
3.30e-05

598.6
610.5

coef
Intercept| 36.1215
Algebra| 0.9610
ACTM| 0.2718
ACTNS| 0.2161
HSRANK| 0.1353

std err
10.752
0.264
0.454
0.313
0.104

3.360
3.640
0.599
0.690
1.306

P>|t|
0.001
0.000
0.551
0.492
0.196

[0.025 0.975]
14.703 57.540
0.435 1.487
0632 1.175
0408  0.840
0071 0342
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Summary

1. Principle of Hypothesis testing
(a) Rejection method
(b) p-values

2. Hypothesis testing applied to problems involving
testing if observed numbers are consistent with
expected proportions
- Many other uses

3. Uses and limitations of hypothesis testing and p-values



Working for multiple-testing example
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