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Announcement

No comprehension questions for this lecture.... yet

But remember Week 4 and Week 6 workshops on statistical problems



Plan for statistical inference

1. Randomness, sampling and simulations (S2 Week 1)

2. Estimation, including confidence intervals (S2 Week 2)

3. Hypothesis testing (S2 Week 3)

Lp 4. A/B testing (S2 Week 3)

Onwards to Logistic regression (S2 Week 4)



Today

- Principle of A/B testing
- what it is, estimation and hypothesis testing
approaches with the bootstrap
- Increasing certainty in A/B testing
- Theoretical, large-sample approach to A/B testing

- Issues in A/B testing

- Comparing paired samples



Inf2 - Foundations of Data Science:
The principle of A/B testing

THE UNIVERSITY of EDINBURGH OF

- informatics DATA




A/B Testing = Randomised controlled trial
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A/B testing example: Estimation approach
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Sampling distribution of d with bootstrap
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Results
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Hypothesis testing approach
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Getting a more certain result
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Question: Is a big enough sample good enough?

We can run more experiments to get lower p-values,
but could we still have the wrong answer?
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Notation and example
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Bootstrap simulation 0.6 - Mean = 2.37
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Theoretical method
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Same or different? (Hypothesis test)
How big is the difference in the means? (Estimation)
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Parameter estimation Hypothesis test
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Proportions
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Worked example of proportions
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(Sample size calculation)
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Statistical versus practical significance

Which scenario is more statistically significant?
Which scenario could be more significant practically?
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Effect size - Cohen's d
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Interpretation of Cohen's d
(Cohen (1988), Sawilowsky (2009)
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A well-known use of Cohen's d

Influence
VISIBLE LEARNING:
The Sequel Self-reported grades
Teacher credibility
Deliberate practice
Feedback

Spaced vs. mass practice

Note taking

Cooperative learning

Ability grouping for gifted students
Extra-curricula programs

Open vs. traditional classrooms
Lack of sleep

Television

Boredom

252 intluences

Cohen’s d

1.33
0.9
0.79
0.7
0.6
0.5
0.4
0.3
0.2
0.01
-0.05
-0.18
-0.49

https://visible-learning.org/hattie-ranking-influences-effect-sizes-learning-achievement/



Ethical issues

- Informed consent
- Remember the Facebook experiment from Semester 1

- Data protection
- Questions to ask
- Would | feel comfortable if this change were tested on me?

- What potential harms could be caused to users?

- Academic setting - ethics approval always needed
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A question and a paired experimental design

28 N Download Firefox

HACKS

Comparing Browser Page Load Time: An

i https://edin.ac/3Cfl2
Introduction to Methodology ps://edin.ac/3Cfl2ag

Browser chrome_normal chrome_private Firefox_normal Firefox_pr

By Dominik Strohmeier, Peter Dolanjski Domain
Posted on November 20, 2017 in Featured Article, Firefox, Firefox Releases, and Performance http://Abcnews.go.com 3.650547 ‘ 618284 3.594570 3.41
On blog.mozilla.org, we shared results of a speed comparison study to show how http://Accuweather.com 4.381038 rmm——— 4.466387 4198777 3.71

fast Firefox Quantum with Tracking Protection enabled is compared to other

browsers. While the blog post there focuses on the results and the speed benefits http://Adelaidenow.com.au 3.919470 V 3.879825 3.825883 3.58
that Tracking Protection can deliver to users even outside of Private Browsing, we http://Adweek.com 3.402131 — 3.438538 3.424099 Hok
also wanted to share some insights into the methodology behind these page load

time comparison studies and benchmarks for different browsers. http://Afr.com 3.646646 pm— 3616274 3.580835 3.44

A general approach to comparing performance across browsers

Load time of 200 popular news sites measured
10 times for each of 4 browser/configurations



Results
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Paired data
Paired t-test
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Paired differences
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Summary

1. A/B testing: controlled experiment, binary or numeric response

2. Estimate confidence intervals between response rates in A and B
by bootstrap or theoretically

3. Hypothesis testing about if groups differ in means
3. Increasing sample size decreases confidence interval and decreases p-value
4. Issues: Ethics and effect size

5. Paired design can give more statistical power



Question: Standard deviation or standard error?

What statistics should | quote to:

- A user who wants to know roughly how long they should expect
to wait before reloading?

- A newspaper editor, who wants to know how long on average
her journalists spent waiting for news sites to load each day
(they check 100s of time a day)



