
Informatics 2:
Introduction to Algorithms and Data Structures

Lecture 1: Overview of Course Content

John Longley

School of Informatics
University of Edinburgh

19 September 2023

IADS Lecture 1 Slide 1



What are algorithms and data structures?

Informatics 2 – Introduction to Algorithms
and Data Structures

Algorithms are basically methods or recipes for solving various
problems. To write a program to solve some problem, we first need
to know a suitable algorithm.

Data structures are ways of storing or representing data that make
it easy to manipulate. Again, to write a program that works with
certain data, we first need to decide how this data should be stored
and structured.

IADS Lecture 1 Slide 2



Tasks calling for algorithms

How would you efficiently . . .

▶ Sort 1000000000 names into alphabetical order?
(Databases)

▶ Visit all web pages reachable from a given starting page?
(Search engines)

▶ Find the shortest/fastest/cheapest route from A to B?
(SatNav)

▶ Find the longest substring shared by two (long) strings?
(Genetics)

▶ Tell whether a 100-digit number is prime or not?
(Cryptography)

In some cases there’s an ‘obvious’ method.

Often there’s a non-obvious method that’s much more efficient.

IADS Lecture 1 Slide 3



Problems, algorithms, programs

IADS Lecture 1 Slide 4



There were algorithms before there were computers

‘Algorithms’ are so named after Muhammad al-Khwārizm̄ı, a 9th
century Persian mathematician who wrote an important book on
methods for arithmetic in decimal notation.
(E.g. +, −, long ×, long /,

√
.)

Even earlier, there was Euclid’s greatest common divisor algorithm:

GCD (4851, 840) = GCD (840, 651) = GCD (651, 189)
= GCD (189, 84) = GCD (84, 21) = 21.

But now that we have computers, algorithms are everywhere!

IADS Lecture 1 Slide 5



Quiz question

Which of the following is not a true statement about algorithms?

1. Typically, the same algorithm can be implemented in many
different programming languages.

2. Some old algorithms are still considered to be very efficient.

3. Some algorithms work OK on small examples, but don’t scale
up to larger ones.

4. In order to design an algorithm for tackling some problem, you
first need to write a program that solves it.

IADS Lecture 1 Slide 6



Data structures
How might you store a set of numbers (e.g. {5, 23, 3, 14, 2}) in a
computer? In an array (sorted or not)? As a linked list? As a tree?

Which of these make it easy . . .

▶ To test whether a given number (e.g. 11) is in the set?

▶ To add or remove a member of the set?

Our choice of data structure may depend on which of these
operations are most important for us.

IADS Lecture 1 Slide 7



What makes computers go faster?

Combination of . . .

▶ Hardware technology (e.g. processor speeds)

▶ Parallel processing (doing several things at once)

▶ Compiler techniques (e.g. optimization of machine code)

▶ Advances in algorithms / data structures.

In this sense, algorithms / data structures are a technology.

E.g. what’s behind the current ‘ChatGPT explosion’?

▶ 1980s-90s: Key Machine Learning algorithms using Recurrent Neural
Networks — but hardware not yet fast enough to use them at scale.

▶ 2000s: As hardware improves, these algorithms take the lead in
language processing tasks.

▶ 2017: Another algorithmic breakthrough: RNNs replaced by
‘Transformers’. Takes AI / Machine Learning to the next level.

(Covered in later year courses in Machine Learning etc.)

IADS Lecture 1 Slide 8



Algorithms: other recent progress

▶ 2017: Major breakthrough in minwise hashing problem from 1997.
Led to order-of-magnitude improvement in near-duplicate detection
in search engines (Wang/Wang/Shrivastava/Ryu).

▶ 2018: Ideas from adaptive sampling give exponential speed-up on
many optimization problems: e.g. taxi dispatch (Singer/Balkanski).

▶ 2022: Powersort replaces Timsort as Python’s sorting algorithm.
Draws on algorithmic work from 1977 on binary search trees
(Mehlhorn).

IADS Lecture 1 Slide 9



Rough outline of course
▶ Simple examples of faster/slower algorithms.

▶ How can we measure how ‘good’ an algorithm is?
Approach via asymptotic analysis.

▶ Sorting algorithms: InsertSort, MergeSort, QuickSort, . . .

▶ Basic data structures: Ways of implementing lists, stacks,
queues, sets, dictionaries, . . .

▶ Algorithms on graphs: depth-first and breadth-first search,
topological sorting, shortest paths.

▶ Dynamic programming: A way to avoid repeating work.
Applications, e.g. seam carving for images.

▶ Algorithms/data structures for language processing (e.g. of
Java or Python source code). Grammars, syntax, parsing.

▶ What are the limits of algorithms and computation?
Glance at complexity theory (intractable problems, P vs. NP)
and computability theory (unsolvable problems, Turing
machines, halting problem).

IADS Lecture 1 Slide 10



Programming thread: Python

The course will emphasize the relevance of algorithms/data struc-
tures to practical programming.

We’ll be using Python as our programming language. (Used in
many later-year courses).

Python lab sheets tie in closely with lecture material. These are to
work through at your own speed, and contain practical exercises for
your own use (not submitted or marked).

The first coursework (at least) will involve Python programming.

IADS Lecture 1 Slide 11



ENJOY THE COURSE!

Reading for this lecture: Algorithms Illuminated (Preface, 1.1, 10.1);
CLRS (Chapter 1).

IADS Lecture 1 Slide 12


