
Introduction to Algorithms and Data Structures

Lecture 14: Graphs, BFS, DFS

Mary Cryan

School of Informatics
University of Edinburgh

IADS – Lecture 14 – slide 1

Directed and Undirected Graphs

I A graph is a mathematical structure consisting of a set of vertices and a
set of edges connecting the vertices.

Formally: G = (V ,E), where V is a set and E ⊆ V × V .

I G = (V ,E) undirected if for all v ,w ∈ V :

(v ,w) ∈ E ⇐⇒ (w , v) ∈ E .

Otherwise directed.

Directed ∼ arrows (one-way)
Undirected ∼ lines (two-way)

IADS – Lecture 14 – slide 2

A directed graph

G = (V ,E) with vertex set V =
{

0, 1, 2, 3, 4, 5, 6
}

and edge set

E =
{
(0, 2), (0, 4), (0, 5), (1, 0), (2, 1), (2, 5),

(3, 1), (3, 6), (4, 0), (4, 5), (6, 3), (6, 5)
}
.

0

2 3

654

1

IADS – Lecture 14 – slide 3

An undirected graph

ba

d

e

f

g

c

IADS – Lecture 14 – slide 4

Examples of graphs in “real life”

Road Maps.
Edges represent streets and vertices represent crossings.

IADS – Lecture 14 – slide 5

Examples (cont’d)

Computer Networks.
Vertices represent computers and edges represent network connections (cables)
between them.

The World Wide Web.
Vertices represent webpages, and edges represent hyperlinks.

IADS – Lecture 14 – slide 6

Adjacency matrices

Let G = (V ,E) be a graph with n vertices, with vertices numbered 0, . . . , n− 1.

The adjacency matrix of G is the n × n matrix A = (aij)0≤i,j≤n−1 with

aij =

{
1 if there is an edge from vertex i to vertex j

0 otherwise.

Python arrays are a bit strange to work with, being set up as “lists of
lists”. Alternatives are:

I Import numpy, and use their true 2D arrays

I Define a mapping (i , j)→ i ∗ n + j (where n is the number of vertices) and
work with a n ∗ n or n ∗ (n + 1)/2 sized 1D array in python.

IADS – Lecture 14 – slide 7

Adjacency matrix (Example)

0

2 3

654

1 

0 0 1 0 1 1 0
1 0 0 0 0 0 0
0 1 0 0 0 1 0
0 1 0 0 0 0 1
1 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 1 0 1 0



IADS – Lecture 14 – slide 8

Adjacency lists

Array with one entry for each vertex v , which is a list of all vertices adjacent
to v .

Example

0

2 3

654

1 2 4

5

5

1

0

35

50

61

0

1

2

5

6

3

4

IADS – Lecture 14 – slide 9

Lists or matrices?

Given: graph G = (V ,E), with n = |V |, m = |E |.
For v ∈ V , we write in(v) for in-degree, out(v) for out-degree.

Which data structure has faster (asymptotic) worst-case running-time, for
checking if w is adjacent to v , for a given pair of vertices?

1. Adjacency list is faster.

2. Adjacency matrix is faster.

3. Both have the same asymptotic worst-case running-time.

4. It depends.

IADS – Lecture 14 – slide 10

Finding neighbours

Given: graph G = (V ,E), with n = |V |, m = |E |.
For v ∈ V , we write in(v) for in-degree, out(v) for out-degree.

Which data structure has faster (asymptotic) worst-case running-time, for visiting
all vertices w adjacent to v , for a given vertex v?

1. Adjacency list is faster.

2. Adjacency matrix is faster.

3. Both have the same asymptotic worst-case running-time.

4. It depends.

IADS – Lecture 14 – slide 11

Adjacency Matrices vs Adjacency Lists

adjacency matrix adjacency list

Space Θ(n2) Θ(n +m)

Time to check if w Θ(1) Θ(out(v))

adjacent to v

Time to visit all w Θ(n) Θ(out(v))

adjacent to v .

Time to visit all edges Θ(n2) Θ(n +m)

IADS – Lecture 14 – slide 12

Sparse and dense graphs

G = (V ,E) graph with n vertices and m edges

Observation: m ≤ n2

I G dense if m close to n2

I G sparse if m much smaller than n2

IADS – Lecture 14 – slide 13

Graph traversals

A traversal is a strategy for visiting all vertices of a graph.

BFS = breadth-first search

DFS = depth-first search

General strategy:

1. Let v be an arbitrary vertex

2. Visit all vertices reachable from v

3. If there are vertices that have not been visited, let v be such a vertex and
go back to 2.

IADS – Lecture 14 – slide 14

BFS

Visit all vertices reachable from v in the following order:

I v

I all neighbours of v

I all neighbours of neighbours of v that have not been visited yet

I all neighbours of neighbours of neighbours of v that have not been visited
yet

I etc.

IADS – Lecture 14 – slide 15

BFS (using a Queue)

Algorithm bfs(G)

1. Initialise Boolean array visited , setting all entries to false.

2. Initialise Queue Q

3. for all v ∈ V do

4. if visited [v] = false then

5. bfsFromVertex(G , v)

IADS – Lecture 14 – slide 16

BFS (using a Queue)

Algorithm bfsFromVertex(G , v)

1. visited [v] = true

2. Q.enqueue(v)

3. while not Q.isEmpty() do

4. v ← Q.dequeue()

5. for all w adjacent to v do

6. if visited [w] = false then

7. visited [w] = true

8. Q.enqueue(w)

IADS – Lecture 14 – slide 17

BFS worked example

IADS – Lecture 14 – slide 18

Asymptotic running-time of BFS

Given a graph G = (V ,E) with n = |V |, m = |E |, what is the worst-case running
time of BFS, in terms of m, n?

1. Θ(m + n)

2. Θ(n2)

3. Θ(mn)

4. Depends on the number of components.

IADS – Lecture 14 – slide 19

DFS

Visit all vertices reachable from v in the following order:

I v

I some neighbor w of v that has not been visited yet

I some neighbor x of w that has not been visited yet

I etc., until the current vertex has no neighbour that has not been visited yet

I Backtrack to the first vertex that has a yet unvisited neighbour v ′.

I Continue with v ′, a neighbour, a neighbour of the neighbour, etc.,
backtrack, etc.

IADS – Lecture 14 – slide 20

Reading

Today’s lecture:

I Graph representations in Section 22.1

I Breadth-first search Section 22.2

Tuesday next:

I Depth-first search Section 22.3

I Topological sort Section 22.4

IADS – Lecture 14 – slide 21

