Introduction to Algorithms and Data Structures

Lecture 14: Graphs, BFS, DFS

Mary Cryan

School of Informatics
University of Edinburgh

IADS — Lecture 14 — slide 1

Directed and Undirected Graphs

» A graph is a mathematical structure consisting of a set of vertices and a
set of edges connecting the vertices.

Formally: G = (V,E), where Visasetand EC V x V.
» G = (V, E) undirected if for all v,w € V:

(v,w) e E &< (w,v) € E.

Otherwise directed.

Directed ~ arrows (one-way)
Undirected ~ lines (two-way)

IADS — Lecture 14 — slide 2

A directed graph

G = (V, E) with vertex set V = {0, 1,2,3,4, 5,6} and edge set
E = {(032))(0»4)a(0)5)>(1a0))(2»1))(2)5)»
(3,1),(3,6), (4,0), (4,5),(6,3), (6,5) }.

IADS — Lecture 14 — slide 3

An undirected graph

IADS — Lecture 14 — slide 4

Examples of graphs in “real life"

Road Maps.
Edges represent streets and vertices represent crossings.

N

IADS — Lecture 14 — slide 5

Examples (cont'd)

Computer Networks.
Vertices represent computers and edges represent network connections (cables)

between them.

The World Wide Web.
Vertices represent webpages, and edges represent hyperlinks.

IADS — Lecture 14 — slide 6

Adjacency matrices

Let G = (V, E) be a graph with n vertices, with vertices numbered 0,...,n— 1.

The adjacency matrix of G is the n x n matrix A = (aj)o<i,j<n—1 With

1 if there is an edge from vertex i to vertex j
2 —
v 0 otherwise.

> Python arrays are a bit strange to work with, being set up as “lists of
lists". Alternatives are:

» Import numpy, and use their true 2D arrays

» Define a mapping (i,j) — i* n+ j (where n is the number of vertices) and
work with a nx nor nx (n+1)/2 sized 1D array in python.

IADS — Lecture 14 — slide 7

Adjacency matrix (Example)

IADS — Lecture 14 — slide 8

001 0110
100 0 0 0O
01 000 1O
01 00O0O01
100 0 0 10
0 000 O0OTG O
0001010

Adjacency lists

Array with one entry for each vertex v, which is a list of all vertices adjacent
to v.

Example

Lelofe[e]o]e]e]
]
o
:
o]

IADS — Lecture 14 — slide 9

Lists or matrices?

Given: graph G = (V, E), with n=1|V|, m = |E|.
For v € V, we write in(v) for in-degree, out(v) for out-degree.

Which data structure has faster (asymptotic) worst-case running-time, for
checking if w is adjacent to v, for a given pair of vertices?

Adjacency list is faster.
Adjacency matrix is faster.

Both have the same asymptotic worst-case running-time.

el A

It depends.

IADS — Lecture 14 — slide 10

Finding neighbours

Given: graph G = (V, E), with n=1|V|, m = |E|.
For v € V, we write in(v) for in-degree, out(v) for out-degree.

Which data structure has faster (asymptotic) worst-case running-time, for visiting
all vertices w adjacent to v, for a given vertex v?

Adjacency list is faster.
Adjacency matrix is faster.

Both have the same asymptotic worst-case running-time.

el A

It depends.

IADS — Lecture 14 — slide 11

Adjacency Matrices vs Adjacency Lists

adjacency matrix

adjacency list

Space 0(n?) O(n+ m)
Time to check if w 0(1) O(out(v))
adjacent to v
Time to visit all w O(n) O(out(v))
adjacent to v.
Time to visit all edges 0(n?) O(n+m)

IADS — Lecture 14 — slide 12

Sparse and dense graphs

G = (V, E) graph with n vertices and m edges

Observation: m < n?

» G dense if m close to n?

» G sparse if m much smaller than n?

IADS — Lecture 14 — slide 13

Graph traversals

A traversal is a strategy for visiting all vertices of a graph.

BFS = breadth-first search

DFS = depth-first search

General strategy:

1. Let v be an arbitrary vertex
2. Visit all vertices reachable from v

3. If there are vertices that have not been visited, let v be such a vertex and
go back to 2.

IADS — Lecture 14 — slide 14

BFS

Visit all vertices reachable from v in the following order:

vV v vy

v

v
all neighbours of v
all neighbours of neighbours of v that have not been visited yet

all neighbours of neighbours of neighbours of v that have not been visited
yet

etc.

IADS — Lecture 14 — slide 15

BFS (using a Queue)

Algorithm bfs(G)

Initialise Boolean array wvisited, setting all entries to FALSE.
Initialise Queuve @
for all v € V do
if visited[v] = FALSE then
bfsFromVertex(G, v)

AN

IADS — Lecture 14 — slide 16

BFS (using a Queue)

Algorithm bfsFromVertex(G, v)

visited[v] = TRUE
Q.enqueue(v)
while not Q.isEmpty() do
v — Q.dequeue()
for all w adjacent to v do
if visited[w] = FALSE then
visited[w] = TRUE

N OO e W=

Q.enqueue(w)

IADS — Lecture 14 — slide 17

BFS worked example

visited

bfs:

IADS — Lecture 14 — slide 18

Asymptotic running-time of BFS

Given a graph G = (V, E) with n =|V|, m = |E|, what is the worst-case running
time of BFS, in terms of m, n?

©(m+n)
Q(n?)
©(mn)

> L o=

Depends on the number of components.

IADS — Lecture 14 — slide 19

DFS

Visit all vertices reachable from v in the following order:

vV v v vV VY

v
some neighbor w of v that has not been visited yet

some neighbor x of w that has not been visited yet

etc., until the current vertex has no neighbour that has not been visited yet
Backtrack to the first vertex that has a yet unvisited neighbour v’.

Continue with v’, a neighbour, a neighbour of the neighbour, etc.,
backtrack, etc.

IADS — Lecture 14 — slide 20

Reading

Today's lecture:
» Graph representations in Section 22.1

» Breadth-first search Section 22.2

Tuesday next:
» Depth-first search Section 22.3

» Topological sort Section 22.4

IADS — Lecture 14 — slide 21

