Introduction to Algorithms and Data Structures Lecture 14: Graphs, BFS, DFS

Mary Cryan

School of Informatics University of Edinburgh

Directed and Undirected Graphs

A graph is a mathematical structure consisting of a set of vertices and a set of edges connecting the vertices.

Formally: G = (V, E), where V is a set and $E \subseteq V \times V$.

•
$$G = (V, E)$$
 undirected if for all $v, w \in V$:

$$(v, w) \in E \iff (w, v) \in E.$$

Otherwise directed.

Directed \sim arrows (one-way) Undirected \sim lines (two-way)

A directed graph

$$\begin{split} G = (V, E) \text{ with vertex set } V = \big\{ 0, 1, 2, 3, 4, 5, 6 \big\} \text{ and edge set} \\ E &= \big\{ (0, 2), (0, 4), (0, 5), (1, 0), (2, 1), (2, 5), \\ &\quad (3, 1), (3, 6), (4, 0), (4, 5), (6, 3), (6, 5) \big\}. \end{split}$$

An undirected graph

Examples of graphs in "real life"

Road Maps.

Edges represent streets and vertices represent crossings.

Examples (cont'd)

Computer Networks.

Vertices represent computers and edges represent network connections (cables) between them.

The World Wide Web.

Vertices represent webpages, and edges represent hyperlinks.

Adjacency matrices

Let G = (V, E) be a graph with *n* vertices, with vertices numbered $0, \ldots, n-1$.

The *adjacency matrix* of G is the $n \times n$ matrix $A = (a_{ij})_{0 \le i,j \le n-1}$ with

$$a_{ij} = egin{cases} 1 & ext{if there is an edge from vertex } i ext{ to vertex } j \ 0 & ext{otherwise.} \end{cases}$$

Python arrays are a bit strange to work with, being set up as "lists of lists". Alternatives are:

- Import numpy, and use their true 2D arrays
- Define a mapping (i, j) → i * n + j (where n is the number of vertices) and work with a n * n or n * (n + 1)/2 sized 1D array in python.

Adjacency matrix (Example)

Adjacency lists

Array with one entry for each vertex v, which is a list of all vertices adjacent to v.

Example

IADS – Lecture 14 – slide 9

Lists or matrices?

Given: graph G = (V, E), with n = |V|, m = |E|. For $v \in V$, we write in(v) for in-degree, out(v) for out-degree.

Which data structure has faster (asymptotic) worst-case running-time, for *checking if w is adjacent to v*, for a given pair of vertices?

- 1. Adjacency list is faster.
- 2. Adjacency matrix is faster.
- 3. Both have the same asymptotic worst-case running-time.
- 4. It depends.

Finding neighbours

Given: graph G = (V, E), with n = |V|, m = |E|. For $v \in V$, we write in(v) for in-degree, out(v) for out-degree.

Which data structure has faster (asymptotic) worst-case running-time, for visiting all vertices w adjacent to v, for a given vertex v?

- 1. Adjacency list is faster.
- 2. Adjacency matrix is faster.
- 3. Both have the same asymptotic worst-case running-time.
- 4. It depends.

Adjacency Matrices vs Adjacency Lists

-		adjacency matrix	adjacency list
	Space	$\Theta(n^2)$	$\Theta(n+m)$
	Time to check if <i>w</i> adjacent to <i>v</i>	$\Theta(1)$	$\Theta(out(v))$
	Time to visit all <i>w</i> adjacent to <i>v</i> .	$\Theta(n)$	$\Theta(out(v))$
	Time to visit all edges	$\Theta(n^2)$	$\Theta(n+m)$

Sparse and dense graphs

G = (V, E) graph with *n* vertices and *m* edges

Observation: $m \le n^2$

- G dense if m close to n^2
- G sparse if m much smaller than n^2

Graph traversals

A *traversal* is a strategy for visiting all vertices of a graph.

BFS = breadth-first search

 $DFS = depth-first \ search$

General strategy:

- 1. Let v be an arbitrary vertex
- 2. Visit all vertices reachable from v
- 3. If there are vertices that have not been visited, let v be such a vertex and go back to 2.

BFS

Visit all vertices reachable from v in the following order:

► v

all neighbours of v

- > all neighbours of neighbours of v that have not been visited yet
- all neighbours of neighbours of neighbours of v that have not been visited yet

etc.

BFS (using a Queue)

Algorithm bfs(G)

- 1. Initialise Boolean array *visited*, setting all entries to FALSE.
- 2. Initialise Queue Q
- 3. for all $v \in V$ do
- 4. **if** visited[v] = FALSE **then**
- 5. bfsFromVertex(G, v)

BFS (using a Queue)

Algorithm bfsFromVertex(G, v)

- 1. visited[v] = TRUE
- 2. Q.enqueue(v)
- 3. while not Q.isEmpty() do
- 4. $v \leftarrow Q.dequeue()$
- 5. **for all** *w* adjacent to *v* **do**
- 6. **if** visited[w] = FALSE **then**
- 7. visited[w] = TRUE
- 8. Q.enqueue(w)

BFS worked example

IADS – Lecture 14 – slide 18

Asymptotic running-time of BFS

Given a graph G = (V, E) with n = |V|, m = |E|, what is the worst-case running time of BFS, in terms of m, n?

- 1. $\Theta(m+n)$
- **2**. $\Theta(n^2)$
- 3. $\Theta(mn)$
- 4. Depends on the number of components.

DFS

Visit all vertices reachable from v in the following order:

► v

- some neighbor w of v that has not been visited yet
- some neighbor x of w that has not been visited yet
- etc., until the current vertex has no neighbour that has not been visited yet
- Backtrack to the first vertex that has a yet unvisited neighbour v'.
- Continue with v', a neighbour, a neighbour of the neighbour, etc., backtrack, etc.

Reading

Today's lecture:

- Graph representations in Section 22.1
- Breadth-first search Section 22.2

Tuesday next:

- Depth-first search Section 22.3
- Topological sort Section 22.4