
Introduction to Algorithms and Data Structures

Lecture 15: DFS and graph structure

Mary Cryan

School of Informatics
University of Edinburgh

IADS – Lecture 15 – slide 1



DFS (using a stack)

Algorithm dfs(G )

1. Initialise Boolean array visited , setting all to false

2. Initialise Stack S

3. for all v ∈ V do

4. if visited [v ] = false then

5. dfsFromVertex(G , v)

IADS – Lecture 15 – slide 2



DFS (using a stack)

Algorithm dfsFromVertex(G , v)

1. S .push(v)

2. while not S .isEmpty() do

3. u ← S .pop()

4. if visited [u] = false then

5. visited [u]← true

6. for all w adjacent to u do

7. if visited [w ] = false then

8. S .push(w)

IADS – Lecture 15 – slide 3



DFS worked example

IADS – Lecture 15 – slide 4



Recursive DFS (no explicit Stack)

Algorithm dfs(G )

1. Initialise Boolean array visited , setting all entries to false

2. for all v ∈ V do

3. if visited [v ] = false then

4. dfsFromVertex(G , v)

Algorithm dfsFromVertex(G , v)

1. visited [v ]← true

2. for all w adjacent to v do

3. if visited [w ] = false then

4. dfsFromVertex(G ,w)

(We will have reversed prioritisation of the vertices adjacent to v , compared to
the Stack version)

IADS – Lecture 15 – slide 5



Analysis of Recursive DFS

Lemma
During dfs(G ), dfsFromVertex(G , v) is invoked exactly once for each vertex v.

Proof.
At least once:

I visited [v ] can only become true when dfsFromVertex(G , v) is executed.

I If visited [v ] remains false, dfsFromVertex(G , v) will eventually be called
by line 4 of dfs(G ).

At most once:

I First call of dfsFromVertex(G , v) sets visited [v ] to true.

I After visited [v ] is true, dfsFromVertex(G , v) is never called again.

(“At most once” is also true for Stack dfs, but “at least once” is not.
dfsFromVertex” is more to ”start a component” in the Stack version)

IADS – Lecture 15 – slide 6



Analysis of DFS (cont’d)

Lemma
For a directed graph,

∑
v∈V out-degree(v) = m.

For an undirected graph,
∑

v∈V deg(v) = 2m.

Proof.
Every edge is counted exactly once on both sides of the equation (for directed).

For the undirected case, every edge is counted twice on the lhs.

IADS – Lecture 15 – slide 7



Analysis of recursive DFS

G = (V ,E ) graph with n vertices and m edges

Algorithm dfs(G )

1. Initialise Boolean array visited , setting all to false

2. for all v ∈ V do

3. if visited [v ] = false then

4. dfsFromVertex(G , v)

I dfs(G ): Ignoring calls to dfsFromVertex, total time Θ(n)

I dfsFromVertex(v) is called at most once for every vertex v , and does
Θ(out-degree(v)) work, excluding recursive calls.

Overall time:

T (n,m) = Θ(n) +
∑

v∈V Θ(out-degree(v))

= Θ
(
n +
∑

v∈V out-degree(v)
)

= Θ(n +m)

IADS – Lecture 15 – slide 8



Adjacency List or Adjacency Matrix?

We said each call to dfsFromVertex(v) takes Θ(out-degree(v)) time (excluding
recursive calls).

Algorithm dfsFromVertex(G , v)

1. visited [v ]← true

2. for all w adjacent to v do

3. if visited [w ] = false then

4. dfsFromVertex(G ,w)

If we are iterating over “all w adjacent to v” in Θ(out-degree(v)) time, then we
must be using an Adjacency list structure.

IADS – Lecture 15 – slide 9



Analysis of Stack DFS

Compare the two dfsFromVertex(G , v) methods:

Algorithm dfsFromVertex(G , v)

1. visited [v ]← true
2. for all w adjacent to v do
3. if visited [w ] = false then
4. dfsFromVertex(G ,w)

Algorithm dfsFromVertex(G , v)

1. S .push(v)
2. while not S .isEmpty() do
3. u ← S .pop()
4. if visited [u] = false then
5. visited [u]← true
6. for all w adjacent to u do
7. if visited [w ] = false then
8. S .push(w)

visited [w ]← true ↔ u ← S .pop(); visited [u]← true;

Recursive: marks v as “visited”, then calls dfsFromVertex for unvisited adjacent vertices

Iterative: “pops” v off top to mark as “visited” and explore/push adjacent vertices.

However, the number of Stack operations for v is bounded in terms of the number of
edges into v ⇒ the overall runtime for our original dfs is still Θ(n +m).

IADS – Lecture 15 – slide 10



DFS Forests

A DFS traversing a graph builds up a forest whose vertices are all vertices of the
graph and whose edges are all vertices traversed during the DFS.

Definition
A vertex w is a child of a vertex v in the DFS forest if dfsFromVertex(G ,w) is
called from dfsFromVertex(G , v).

IADS – Lecture 15 – slide 11



DFS Forests Example

0

2 3

654

1 0

2 4

51

6

3

On directed graphs, the connected components (trees) might vary depending on
the order in which we consider vertices at the top-level of dfs.

IADS – Lecture 15 – slide 12



Topological Sorting

Example:
10 tasks to be carried out. Some of them depend on others.

I Task 0 must be completed before Task 1 can be started.

I Task 1 and Task 2 must be done before Task 3 can start.

I Task 4 must be done before Task 0 or Task 2 can start.

I Task 5 must be done before Task 0 or Task 4 can start.

I Task 6 must be done before Task 4, 5 or 7 can start.

I Task 7 must be done before Task 0 or Task 9 can start.

I Task 8 must be done before Task 7 or Task 9 can start.

I Task 9 must be done before Task 2 or Task 3 can start.

IADS – Lecture 15 – slide 13



Topological order

Definition
Let G = (V ,E ) be a directed graph. A topological order of G is a total order ≺
of the vertex set V such that for all edges (v ,w) ∈ E we have v ≺ w .

(in some fields this is called a linear extension)

IADS – Lecture 15 – slide 14



Tasks as a (directed) graph

5

3

1

9

4

76 8

2

0

Does this graph have a topological order?

Yes. One topological sort is:

8 ≺ 6 ≺ 7 ≺ 9 ≺ 5 ≺ 4 ≺ 2 ≺ 0 ≺ 1 ≺ 3.

IADS – Lecture 15 – slide 15



Topological order (cont’d)

A digraph that has a cycle does not have a topological order.

Definition
A DAG (directed acyclic graph) is a digraph without cycles.

Theorem
A digraph has a topological order if and only if it is a DAG.

IADS – Lecture 15 – slide 16



Classification of vertices during recursive DFS

G = (V ,E ) graph, v ∈ V . Consider dfs(G ).

I v is finished if dfsFromVertex(G , v) has been completed.

Vertices can be in the following states:

I not yet visited (let us call a vertex in this state white),

I visited, but not yet finished (grey).

I finished (black).

(note these colours are explicitly marked in version of DFS by [CLRS] 22.3)

IADS – Lecture 15 – slide 17



Classification of vertices during recursive DFS (cont’d)

Lemma
Let G be a graph and v a vertex of G. Consider the moment during the
execution of dfs(G ) when dfsFromVertex(G , v) is started.
Then for all vertices w we have:

1. If w is white and reachable from v, then w will be black before v .

2. If w is grey, then v is reachable from w.

IADS – Lecture 15 – slide 18



Topological sorting

G = (V ,E ) digraph. Define order on V as follows:

v ≺ w ⇐⇒ w becomes black before v .

Theorem
If G is a DAG then ≺ is a topological order.

Proof.
Suppose (v ,w) ∈ E . Consider dfsFromVertex(G , v).

I If w is already black, then v ≺ w (and this is what we want).

I If w is white, then by Lemma part 1., w will be black before v . Thus
v ≺ w .

I If w is grey, then by Lemma part 2. v is reachable from w . So there is a
path p from w to v . Path p and edge (v ,w) together form a cycle.
Contradiction! (G is acyclic . . .)

IADS – Lecture 15 – slide 19



Topological sorting implemented

Algorithm topSort(G )

1. Initialise array state
by setting all entries to white.

2. Initialise linked list L

3. for all v ∈ V do

4. if state[v ] = white then

5. sortFromVertex(G , v)

6. print L

IADS – Lecture 15 – slide 20



Topological sorting implemented

Algorithm sortFromVertex(G , v)

1. state[v ]← grey

2. for all w adjacent to v do

3. if state[w ] = white then

4. sortFromVertex(G ,w)

5. else if state[w ] = grey then

6. print “G has a cycle”

7. halt

8. state[v ]← black

9. L.insertFirst(v)

Difference from dfs itself - the order the vertices get added to the list.

Running-time is again Θ(n +m)

IADS – Lecture 15 – slide 21



Example

5

3

1

9

4

76 8

2

0

Use the algorithm topSort to compute a topological sort of this graph.

IADS – Lecture 15 – slide 22



Connected components of an undirected graph

G = (V ,E ) undirected graph

Definition

I A subset C of V is connected if for all v ,w ∈ C there is a path from v
to w (if G is directed, say strongly connected).

I A connected component of G is a maximum connected subset C of V .
(no connected subset C ′ of V strictly contains C .

I G is connected if it only has one connected component, that is, if for all
vertices v ,w there is a path from v to w .

IADS – Lecture 15 – slide 23



Connected components - undirected (cont’d)

I Each vertex of an undirected graph is contained in exactly one connected
component.

I For each vertex v of an undirected graph, the connected component that
contains v is precisely the set of all vertices that are reachable from v .

For an undirected graph G , dfsFromVertex(G , v) visits exactly the vertices in the
connected component of v .

And the same is true for bfsFromVertex(G , v) (either will do!)

IADS – Lecture 15 – slide 24



Connected components - undirected (cont’d)

Algorithm connComp(G )

1. Initialise Boolean array visited
by setting all entries to false

2. for all v ∈ V do

3. if visited [v ] = false then

4. print “New Component”

5. ccFromVertex(G , v)

Algorithm ccFromVertex(G , v)

1. visited [v ]← true

2. print v

3. for all w adjacent to v do

4. if visited [w ] = false then

5. ccFromVertex(G ,w)

IADS – Lecture 15 – slide 25



Reading

From [CLRS:

I Depth-first search - Section 22.3

I Computing topological sort - Section 22.4

From “Algorithms Illuminated”:

I sections 8.3, 8.4, 8.5

Hope you get a break over the holidays!

And “see” you in 2025.

IADS – Lecture 15 – slide 26


