
Inf2-SEPP:
Lecture 11: Design Patterns: MVC, Command

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh



Previous lectures

I Design
I Class diagrams
I Sequence diagrams

Both important for this lecture

2 / 61



This lecture

Design patterns

I Meaning, background and use

I Elements of a pattern

I Cautions on pattern use

I Architectural pattern: The Model View Controller (MVC)
I Detailed design pattern (behavioural): Command

I The problem
I Details
I Advantages
I Disadvantages

3 / 61



Design Patterns

“Reuse of good ideas”

A pattern is a named, well understood good solution to a common
problem.

I Experienced designers recognise variants on recurring
problems and understand how to solve them.

I They communicate their understanding by recording it in
design patterns

I Such patterns then help novices avoid having to find solutions
from first principles.

Patterns help novices to learn by example to behave more like
experts.

4 / 61



Patterns: background and use

Idea comes from architecture (Christopher Alexander): e.g.
Window Place: observe that people need comfortable places to
sit, and like being near windows, so make a comfortable seating
place at a window.

Similarly, software design patterns address many commonly arising
technical problems in software design, particularly OO design

Patterns also used in: reengineering; project management;
configuration management; etc.

Pattern catalogues: for easy reference, and to let designers talk
shorthand.

5 / 61



Elements of a pattern

A pattern catalogue entry normally includes roughly:

I Name (e.g. Publisher-Subscriber)

I Aliases (e.g. Observer, Dependants)

I Context (in what circumstances can the problem arise?)

I Problem (why won’t a naive approach work?)

I Solution (normally a mixture of text and models)

I Consequences (good and bad things about what happens if
you use the pattern.)

6 / 61



Cautions on pattern use

Patterns are very useful if you have the problem they’re trying to
solve.

But they add complexity, and often e.g. performance penalties too.
Exercise discretion.

You’ll find the criticism that the GoF patterns in particular are
“just” getting round the deficiencies of OOPLs. This is true, but
misses the point.

(GoF = “Gang of Four”, authors of the first major Design Patterns
book)

7 / 61



Model View Controller (MVC): the problem

Context: architectural design

Reminders:

I The more complex a system is, the less maintainable, harder
to understand, error prone, less secure.

I Complexity can increase at a high speed: the more
components, the even more relationships between them

I Related concept of coupling; The more relationships, the
higher the coupling

I Design guidelines/principles:
I Separation of concerns: components doing only one thing;

grouping components with related functionality
I Keeping coupling low

Especially a problem for large scale systems (over 100K LOC)

8 / 61



Model View Controller (MVC): the solution

Split the application into 3 components:

I Model: manages data and the domain logic of the application.
Communicates with the controller. Usually interacts with a
data source (database, input file, etc.). Can sometimes
update the view (not in version from this course).

I View: defines and manages how data is presented to the
users. There can be several views.

I Controller: receives input from the user, handles application
logic, acts as middleman between model and view.

9 / 61



Model View Controller (MVC): an example interaction

10 / 61



Model View Controller (MVC): advantages and use

I Facilitates the separation of concerns, as each component has
distinct responsibilities

I Decouples presentation (the view) from data and domain logic
(the model)

I Multiple developers can work in parallel on the different
components

I Easier to understand, maintain, less error prone

I Easier to test

I Supports multiple views, ideal for web applications

One of most popular architectures for web applications, used in
numerous web frameworks: Ruby on Rails, Angular, Django, Flask.

11 / 61



Command pattern: the problem

Context: detailed design

Problems:

1. Parametrising an object (an invoquer) with a command to
another (a receiver)

2. (Optional) Objects from different classes being able to do the
same command

E.g. Universal remote control being programmable to turn on and
off various items in your home like lights, stereo, AC etc. It should
be easy to change button and dial controls, and to set buttons and
dials to do the same thing.

12 / 61



Command pattern: the problem

Näıve solutions for problem 1):

I Adding to the invoquer’s implementation long lists of if-else
statements standing for all possible commands, what to do,
and for what receiver.
E.g. in a Button class: ”if required to turn on AC, tell AC
object . . . , if required to turn off lights tell Light object”.

I Subclassing the invoquer for its use for different commands
(to different receivers), interchangeable at runtime.
E.g. ButtonACOn, ButtonLightsOff inheriting from Button

Difficult to understand (1), maintain (1, 2 if many subclasses),
error prone (1, 2 especially if updating superclass); Invoquers are
tightly coupled with receivers; problem 2 would only be solvable
with code duplication or adding class dependencies.

13 / 61



Command pattern: general solution

14 / 61



Command pattern: solution to the example

15 / 61



Command pattern: advantages and disadvantages

Advantages:

I Reduced coupling between invoquer and receiver

I Commands are objects so can be manipulated and extended
like any object

I Composite commands can be set up

I Commands can be queued

I Undo/redo and logging can be set up

I Changing command in invoquer is easy

I Several invoquers can use the same commands without code
duplication

I Extensible as adding new commands is easy

Disadvantage: code may become more complex due to extra layer
between invoquer and receiver

16 / 61



Resources

Recommended: Read more on design patterns in general, e.g.

I Stevens: Ch18.2
I Sommerville: Look up design patterns in index
I http://en.wikipedia.org/wiki/Design_Patterns

Essential: Read on the MVC and Command patterns:

I On the MVC architectural pattern: from YouTube
I If you can get a copy of Gamma, E., 1995. Design

patterns: elements of reusable object-oriented software.
Pearson Education India: p. 263-268 ”Command”

I On the Command pattern: from Refactoring Guru and
YouTube

17 / 61

http://en.wikipedia.org/wiki/Design_Patterns
https://www.youtube.com/watch?v=pCvZtjoRq1I
https://refactoring.guru/design-patterns/command
https://www.youtube.com/watch?v=9qA5kw8dcSU

	Design patterns

