
Inf2-SEPP:
Lecture 12 Part 1: Design Patterns: Observer,

Singleton

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh



Previous lecture

I Design patterns
I Introduction, cautions
I The MVC Pattern
I The Command Pattern (a behavioural pattern)

2 / 16



This lecture

Design patterns continued

I The Observer Pattern (a behavioural pattern) and the
Singleton Pattern (a creational pattern)
I The problem
I Details
I Benefits
I Drawbacks

3 / 16



Observer pattern: the problem

Context: detailed design

Problems:

1. Maintaining state consistency between a set of cooperating
classes, i.e. dependant classes being informed about the state
changes of subject classes.

2. Easily adding and removing dependants without changing the
subjects (i.e. not knowing of who dependants are).

Example: Changing the way information on students (the subjects)
is presented in a bar chart vs pie chart (dependants).

Observer is often used in event driven software, and in MVC
pattern to represent the ’view’ part.

4 / 16



Observer pattern: the problem

Näıve solution for problem 1): associating each subject with each
of its dependants

BUT this leads to tight coupling, not respecting problem 2):

I The subject must know of its dependants and their number

I The subjects may need updating when dependants are
updated.

5 / 16



Observer pattern with one subject

6 / 16



Observer pattern with potentially more subjects

7 / 16



Observer pattern with potentially more subjects

8 / 16



Observer pattern: Advantages and disadvatages

Advantages:

I Abstract, minimal subject-observer class coupling

I Support for broadcasting, without the subject needing to
know and inform each observer

Disadvantages:

I May lead to cascades of updates which are difficult to debug

I Costly in terms of space if many subjects and few observers;
One solution: use of hash maps, costly in terms of time.

I Ending up with dangling references to deleted subjects/
observers; One solution: notifying when deleted

I Risk of having an inconsistent subject state before notification

9 / 16



Singleton Pattern: The problem

Context: detailed design

There are situations in which we want for a class to:

1. Have a single instance

2. Offer global access to it

3. Protect it from being overwritten

E.g. A single log of all all actions taken by all the entities in the
system.

10 / 16



Singleton Pattern: The problem

Näıve partial solution to problem 2 in other programming
languages than Java: global variables can make objects accessible

BUT:

I You could still instantiate several such objects (breaks
problem 1)

I They can be overwritten, so very unsafe (breaks problem 3)

The Singleton Pattern is used to address this problem. It is often
used for logging, driver objects, caching, and in many other
patterns.

11 / 16



Singleton Pattern: Details

There are many versions of Singleton, but they all share the
following main ideas:

I Make the class itself responsible to keep track of its sole
instance, by hiding its constructor (using private in Java)

I The class offers a way to access the instance, through a static
operation (getInstance()) which returns the sole instance of
the class

12 / 16



Singleton Pattern: Eager initialisation

The instance is created at first loading of the class (even if not
needed).

13 / 16



Singleton Pattern: Lazy initialisation (for single threaded
systems)

The instance is created the first time the global creation operation
is called.

14 / 16



Singleton Pattern: Advantages and disadvatages
Advantages:

I Offers controlled global access to a sole instance of a class

I The object is initialised only once

I Preferred over global variables: avoids polluting the name
space, permits lazy allocation and initialisation

I Can be easily changed to allow more instances of the class, by
editing the getInstance() operation

Disadvantages (leading some to frame it as an anti-pattern):

I It is frequently misused, adding unnecessary restrictions

I Introduces global state, potentially unsafe

I Leads to tight coupling between classes in your application

I Multiple threads may create multiple objects

I Its private constructor and static operation make it difficult to
produce mock objects needed for unit testing

15 / 16



Resources

Essential: Read about the Observer and Singleton patterns:

I If you can get a copy of Gamma, E., 1995. Design
patterns: elements of reusable object-oriented software.
Pearson Education India: p. 326-337 ”Observer”, p.
144-146 ”Singleton”

I On the Observer pattern: from Source Making and
Wikipedia

I On the Singleton pattern: from Refactoring Guru and
Wikipedia

16 / 16

https://sourcemaking.com/design_patterns/observer
https://en.wikipedia.org/wiki/Observer_pattern
https://refactoring.guru/design-patterns/singleton
https://en.wikipedia.org/wiki/Singleton_pattern

