
Inf2-SEPP:
Lecture 12 Part 2: Design in Plan-Driven vs Agile

Software Development Processes

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh



This lecture

I The extreme opposed viewpoints to design:
I From the classic Waterfall plan-driven process: Big design Up

Front (BDUF)
I From the Extreme Programming (XP) agile process: ’You

Aren’t Gonna Need It’ (YAGNI), ’Do the simplest thing that
can possibly work’ (DTSTTCPW), emerging design

I More on design in different processes:
I In plan-driven processes
I In agile processes

I What do companies do in reality?

2 / 13



Extreme opposed viewpoints to design: 1. From the classic
Waterfall plan-driven process

Waterfall prevalent software dvelopment process for decades

Big design Up Front (BDUF):

I Derogatory term used by agile community referring to design
in the classic plan-driven Waterfall Model

I Approach in which the system’s design is completed and
perfected before starting the implementatin

I Time, effort and money are invested into doing design properly

I Thorough documentation is kept on the design

3 / 13



BDUF: Advantages and disadvantages

Advantages:

I Good for systems with stable requirements

I Economical and efficient if changes can be predicted as
everything is planned ahead of time

I Can simplify development, save rework, help understand
design

I Easy to cost and schedule design

Disadvantages:

I In many contexts error prone as one cannot foresee all changes

I Can be wasteful if things do not go to plan

I To reduce risk, adding potentially useful functionality (’gold
plating’) the design, which can turn out to be wasted effort

4 / 13



Extreme opposed viewpoints to design: 2. XP design
maxims and practices

Extreme Programming (XP) one of the most influential agile
processes, and the most specific regarding appropriate software
engineering practices.

XP maxims regarding design:

I You aren’t gonna need it (YAGNI):
I Not overengineering a design just because you think you may

need some things later (i.e. ’gold plating’)
I Focusing on requirements for each iteration

I Related: Do the simplest thing that could possibly work
(DTSTTCPW):
I Picking to do something that can be done quickly (right now)
I Picking a minimal solution for solving the direct problem
I Moving on to other important things to do as soon as possible

5 / 13



Extreme opposed viewpoints to design: 2. XP design
maxims and practices

YAGNI and DTSTTCPW foundation of the practice of simple
design.

YAGNI also considered to to be related to the XP practice of
emergent design (evolutionary design):

I Minimal or no design up front (NDUF)

I Growing a design as your understanding of the problem (and
its solution) evolves.

I Not creating lengthy documentation on the design

6 / 13



YAGNI and DTSTTCPW: Advantages and disadvantages

Advantages:

I Less wasteful in terms of time, money, effort (we may not get
it right)

I Design is easier to understand (controversial)

I More targeted on needs

I Support agile overall, making short iterations possible

I Supported by agile: short iterations + feedback reactive to
change so no need for ’gold plating’; can focus on the ’now’

Disadvantages:

I Not building flexible components and frameworks until they
are needed questionable decision

I Another practice of XP, refactoring, seen by some as breaking
YAGNI

7 / 13



Emergent design: Advantages and disadvantages

Advantages:

I Takes advantage of new learnings as they emerge

I Reactive to change

I Encourages collaboration within the team

I Uncertainty about the effectiveness of design removed

I Saves time by avoiding documentation that may not be useful

Disadvantages:

I Can make it difficult to see big picture of design, and may
lead to mediocre, inconsistent design

I Can lead design to break (refactoring essential)

I Design difficult to cost

8 / 13



More on design in plan-driven processes

In plan-driven software development processes:

I Design (as requirements and other activities) is a separate
stage in the software development

I Architectural and detailed design carried out thoroughly

I Heavyweight design documentation produced

I Formally using modelling and notation (e.g. UML class,
sequence, communication diagrams) often associated with
plan-driven development

I Outputs from design used to plan implementation

9 / 13



More on design in agile processes

In agile software development processes:

I Design and implementation the focus (’working software’)

I Agile not doing architectural design is a myth; Overall system
architecture seen as important in early stage of development.

I Design interleaved with requirements and implementation in
each iteration; focusing on most important unfinished features

I No formal, detailed, design documents are produced (seen as
waste of time): informal documents or design documentation
is automatically generated by programming environment

I Outputs of design may not be specification documents, but
reflected later in the code

I Models (e.g. UML class, sequence, communication diagrams)
may be informally used to facilitate team communication

10 / 13



What do companies do in reality?

Reminder: companies in reality use a mix and match of software
development processes

Many critics see neither BDUF nor the XP maxims/practices as
ideal in all situations. They are usually best for software which fit
the processes which produced them.

Some more mixed approaches to design were also proposed:

I ”Just enough” up front design

I Adaptable design up front

If interested, see recommended resources

11 / 13



Resources (check links)

I Essential:
I ’Big Design Up Front Versus Emergent Design’, Anthony

Langsworth
I First part (until separating line) of c2 wiki ’Do the Simplest

Thing That Could Possibly Work’
I c2 wiki ’You Arent Gonna Need It’ until ’humor’
I ’Is design dead?’ by Martin Fowler, until ’Patterns and XP’

12 / 13

https://randomactsofarchitecture.com/2013/07/08/big-design-up-front-versus-emergent-design/
http://wiki.c2.com/?DoTheSimplestThingThatCouldPossiblyWork
http://wiki.c2.com/?DoTheSimplestThingThatCouldPossiblyWork
http://wiki.c2.com/?YouArentGonnaNeedIt
https://www.martinfowler.com/articles/designDead.html


Resources (check links)

I Recommended:
I ’Just Enough’ Up Front Design by Simon Brown
I ’Adaptable Design Up Front’ by Hayim Makabee

13 / 13

https://www.youtube.com/watch?v=dtVI7PvgVsQ
https://effectivesoftwaredesign.com/adaptable-design-up-front/

