
Inf2: SEPP
Lecture 15: Construction II:

version control and system building

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh



Last lectures

I Construction: high quality code

2 / 29



This lecture

Construction: version control and system building

I The problem of systems changing

I Software Configuration Management
I Version control

I How file updates can be lost
I Lock-Modify-Unlock model (RCS)
I Copy-Modify-Merge model (CVS and SVN) and its three-way

merge
I Distributed version control (Git, Mercurial, Bazaar)
I More on branches

I Build tools: Make, Ant, Maven, Gradle

3 / 29



The problem of systems changing

I Systems are constantly changing through development and
use
I Requirements change and systems evolve to match
I bugs found and fixed
I new hardware and software environments are targeted

I Multiple versions might have to be maintained at each point
in time

I Easy to lose track of which changes realised in which version

I Help is needed in managing versions and the processes that
produce them.

4 / 29



Software Configuration Management to the rescue
CM is all about providing such help.

Common CM activities:

I Version control
I tracking multiple versions,
I ensuring changes by multiple developers don’t interfere

I System building
I assembling program components, data and libraries,
I compiling and linking to create executables

I Change management
I tracking change requests,
I estimating change difficulty and priority
I scheduling changes

I Release management
I preparing software for external release
I tracking released versions

Focus on first two today
5 / 29



Version control

6 / 29



Version control

The core of configuration management.

The idea:

I keep copies of every version (every edit?) of files

I provide change logs

I somehow manage situation where several people want to edit
the same file

I provide diffs/deltas between versions

7 / 29



How file updates can be lost

8 / 29



Lock-Modify-Unlock Model

I Editor checks-out a file from a repository
I Editor locks file
I Others can check-out, but only for reading

I Editor makes changes

I Editor checks-in modified file to repository
I Lock is released
I Changes now viewable by others
I Others now can make their own changes

9 / 29



Lock-Modify-Unlock Example

10 / 29



RCS

I Old, primitive VC system, much used on Unix.

I Uses Lock-Modify-Unlock model

I Keeps deltas between versions; can restore, compare, etc.

I Can manage multiple branches of development.

I Works on single files, not collection of files or directory
hierarchies.

I Best suited for small projects, where only one person edits at
a time.

11 / 29



CVS and SVN

CVS is a much richer system, (originally) based on RCS.
Subversion (SVN) is very similar, but newer.

Both handle entire directory hierarchies or projects – keep a single
master repository for project.

Designed for use by multiple developers working simultaneously –
Copy-Modify-Merge model replaces Lock-Modify-Unlock.

Pattern of use for Copy-Modify-Merge:

I check out entire project (or subdirectory) (not individual files).

I Edit files.
I Do update to get latest versions of everything from repository

I system merges non-overlapping changes
I user has to resolve overlapping changes - conflicts

I check-in version with merges and resolved conflicts

Central repository may be on local filesystem, or remote.

12 / 29



Copy-Modify-Merge

13 / 29



Copy-Modify-Merge

14 / 29



Three-way Merge
1) Original file: Alpha

Bravo

Charlie

(common ancestor)

2) Tester 1 edits: Alpha

Foxtrot

Charlie

3) Tester 2 edits: Delta

Alpha

Echo

Charlie

4) Tester 2 commits changes. 5) Tester 1 commit fails.

6) Tester 1 updates and merge reports conflicts:
Delta

Alpha

<<<<<<< .mine

Foxtrot

=======

Echo

>>>>>>> .r4

Charlie

7) Tester 1 fixes conflicts. 8) Tester 1 commits. 15 / 29



Distributed version control

E.g. Git, Mercurial, Bazaar.

All the version control tools we’ve talked about so far use a single
central repository: so, e.g., you cannot check changes in unless you
can connect to its host, and have permission to check in.

Distributed version control systems (dVCS) allow many repositories
of the same software to be managed, merged, etc.

I reduces dependence on single physical node

I allows people to work (including check in, with log comments
etc.) while disconnected

I much faster VC operations

I But... much more complicated and harder to understand

16 / 29



Distributed VCS

17 / 29



Distributed VCS

18 / 29



Branches

19 / 29



Branches
Simplest use of a VCS gives you a single linear sequence of
versions of the software.

Sometimes it’s essential to have, and modify, two versions of the
same item and hence of the software: e.g., both

I the version customers are using, which needs bugfixes, and
I a new version which is under development

As the name suggests, branching supports this: you end up with a
tree of versions.

What about merging branches, e.g., to roll bugfixes in with new
development?

I In general need a 3-way merge between ends of two branches
and a common ancestor

I Merge support good in Git and Mercurial
I Developers with these VCSs use branches a lot more.

I Merge support has improved with recent SVN versions
20 / 29



Build tools

Given a large program in many different files, classes, etc., how do
you ensure that you recompile one piece of code when another
than it depends on changes?

On Unix (and many other systems) the make command handles
this, driven by a Makefile. Used for C, C++ and other ‘traditional’
languages (but not language dependent).

21 / 29



part of a Makefile for a C program
OBJS = ppmtomd.o mddata.o photocolcor.o vphotocolcor.o dyesubcolcor.o

ppmtomd: $(OBJS)

$(CC) -o ppmtomd $(OBJS) $(LDLIBS) -lpnm -lppm -lpgm -lpbm -lm

ppmtomd.o: ppmtomd.c mddata.h

$(CC) $(CDEBUGFLAGS) -W -c ppmtomd.c

mddata.o: mddata.c mddata.h

Makefile rule structure: target: dependencies
command1
command2
...

Running make target uses commands to

I create target from dependencies if it does not exist
I rebuild target when any of dependencies are newer.

Before creating / rebuilding target, make recursively considers
whether any dependencies need creating or rebuilding.

22 / 29



Make example

ppmtomd.o

vphotocolcor.o

photocolcor.o

dyesubcolcor.o
ppmtomd

mddata.o

ppmtomd.c mddata.h

mddata.c

23 / 29



Ant

make can be used for Java.

However, there is a pure Java build tool called Ant.

Ant Buildfiles (typically build.xml) are XML files, specifying the
same kind of information as make.

24 / 29



part of an Ant buildfile for a Java program

<?xml version="1.0" encoding="ISO-8859-1"?>

<project name ="Dizzy" default = "run" basedir=".">

<description>

This is an Ant build script for the Dizzy chemical simulator. [...]

</description>

<!-- Main directories -->

<property name = "source" location = "${basedir}/src"/> [...]

<!--General classpath for compilation and execution-->

<path id="base.classpath">

<pathelement location = "${lib}/SBWCore.jar"/> [...]

</path> [...]

<target name = "run" description = "runs Dizzy"

depends =" compile, jar">

<java classname="org.systemsbiology.chem.app.MainApp" fork="true">

<classpath refid="run.classpath" />

<arg value="." />

</java>

</target> [...]

</project>

25 / 29



Maven

For making the building of Java projects simpler and more uniform.

Defines default support for

I compiling

I testing (using unit tests)

I packaging (e.g. as jar file)

I integration testing

I installing (e.g. into local repository)

I deploying (e.g. into release environment for sharing with other
project)

I generating documentation

Buildfiles are also XML files.

26 / 29



Gradle
The official build tool for Android, also used by Linkedin,
NETFLIX, Adobe and many others

Based on Groovy, a scripting language built on top of the Java
JVM and similar to Java, and so:

I Easier to understand than XML-based build tools

I Concise and less verbose

Buildfiles can also be written using Kotlin (another JVM language)

Highly configurable, can handle obscure requirements in the build

Very performant, more so than Maven because of:

I Incremental builds: only running what is necessary

I Its build cache

I The Gradle Daemon keeping build information in memory

Provides interactive web-based UI for debugging, optimizing builds
27 / 29



Reading

On version control:

Essential: Ch 1- Version Control Basics section of the SVN book
https://svnbook.red-bean.com/en/1.7/svn-book.pdf

If unfamiliar with Git and/or GitHub, Essential: I The Git &
GitHubTutorial by Christos Vasiliadotis provided under
Other Resources on the OpenCourse course webpage

I This article written by a former SEPP student:
https://jadens.medium.com/

a-beginners-guide-to-git-and-version-control-software-9f22da5dd4c7

Optional: Mercurial tutorial http://hginit.com/

28 / 29

https://svnbook.red-bean.com/en/1.7/svn-book.pdf
https://jadens.medium.com/a-beginners-guide-to-git-and-version-control-software-9f22da5dd4c7
https://jadens.medium.com/a-beginners-guide-to-git-and-version-control-software-9f22da5dd4c7
http://hginit.com/


Reading

On build tools:

Essential: An introduction to build tools:
https://medium.com/xebia-engineering/

a-general-introduction-to-build-tools-9070a47ed405

Essential: Gradle tutorial
https://www.youtube.com/watch?v=RrVURuzcFhY&t=15s,

Essential: Gradle Building Java Applications Sample
https://docs.gradle.org/current/samples/sample_

building_java_applications.html

Optional: A Gentle Introduction to Gradle:
https://www.youtube.com/watch?v=OFUEb7pLLXw

Optional: Maven tutorial
https://maven.apache.org/users/index.html

29 / 29

https://medium.com/xebia-engineering/a-general-introduction-to-build-tools-9070a47ed405
https://medium.com/xebia-engineering/a-general-introduction-to-build-tools-9070a47ed405
https://www.youtube.com/watch?v=RrVURuzcFhY&t=15s
https://docs.gradle.org/current/samples/sample_building_java_applications.html
https://docs.gradle.org/current/samples/sample_building_java_applications.html
https://www.youtube.com/watch?v=OFUEb7pLLXw
https://maven.apache.org/users/index.html

