
Inf2: SEPP
Lecture 17: Refactoring

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh

Last two lectures:

Construction:

I High quality code

I Version control and system building

2 / 69

This lecture:

Refactoring, seen by some software development processes (e.g.
XP) as integral part of the development process

I The problem

I Definitions

I Why?

I When?

I What?
I Refactoring in different IDEs:

I IntelliJ
I Eclipse

I Safe refactoring

I Bad smells in code

3 / 69

The Problem

As code evolves its quality naturally decays

I Initially code implementing a good design

I Changes often local, without full understanding of the context

I With loss of structure, code becomes harder to follow, harder
to modify

Refactoring is about restoring good design in a disciplined way

I Expertise on refactoring captured in refactoring patterns
I Enable rapid learning
I Tool support

4 / 69

Refactoring definition
Refactoring (noun) is a change made to the internal structure of
software to make it

I easier to understand, and

I cheaper to modify

without changing its observable behaviour

Refactor (verb) to restructure software by applying a series of
refactorings without changing its observable behaviour

Fowler, Refactoring, 2000

Refactoring (noun) also used to refer to the general activity

5 / 69

Why refactor?

Refactoring

I makes software easier to understand
I Your code, by you,
I Your code, by others,
I Others’ code, by you

I helps you make subsequent modifications quicker

I helps you find bugs
I Design becomes clearer and bugs easier to see

The result: refactoring helps you program faster

6 / 69

When to refactor?

Refactoring was once seen as a kind of maintenance. . .

For example:

I You’ve inherited legacy code that’s a mess.

I A new feature is required that necessitates a change in the
architecture.

But can also be an integral part of the development process

Agile methodologies (e.g. XP) advocate continual refactoring
(XP maxim: “Refactor mercilessly”).

7 / 69

What does refactoring do?

A refactoring is a small transformation which preserves correctness.

There are many examples.
For a catalogue of over 90 assembled by Martin Fowler, see
http://refactoring.com/catalog/.

A sample:

I Add Parameter

I Change Bidirectional Association to Unidirectional

I Extract Variable (Introduce Explaining Variable)

I Replace Conditional with Polymorphism

8 / 69

http://refactoring.com/catalog/

Extract Variable
Change

if ((platform.toUpperCase().indexOf("MAC") > -1) &&

(browser.toUpperCase().indexOf("IE") > -1) &&

wasInitialized() && resize > 0)

{

// do something

}

to

final boolean isMacOs = platform.toUpperCase().indexOf("MAC") > -1;

final boolean isIEBrowser = browser.toUpperCase().indexOf("IE") > -1;

final boolean wasResized = resize > 0;

if (isMacOs && isIEBrowser && wasInitialized() && wasResized)

{

// do something

}

9 / 69

Replace Conditional with Polymorphism I

Change

double getSpeed() {

switch (_type) {

case EUROPEAN:

return getBaseSpeed();

case AFRICAN:

return getBaseSpeed() - getLoadFactor() * _numberOfCoconuts;

case NORWEGIAN_BLUE:

return (_isNailed) ? 0 : getBaseSpeed(_voltage);

}

throw new RuntimeException ("Should be unreachable");

}

10 / 69

Replace Conditional with Polymorphism II

to

11 / 69

IntelliJ Refactoring

To see available refactorings in IntelliJ IDEA, you need to select an
item to refactor and press Ctrl+ Alt+ Shift+ T, or use a keyboard
shortcut for a specific refactoring.

Other features:

I For some refactorings, previewing

I If there are problems with the refactoring, conflicts are
displayed

I For both of the above, excluding or removing any unnecessary
changes

12 / 69

Most Popular IntelliJ Refactorings

I Safe delete: Alt + Delete

I Copy/move: F5/ F6

I Extract method: Ctrl+ Alt+ M

I Extract constant: Ctrl+ Alt+ C

I Extract field: Ctrl+ Alt+ F

I Extract parameter: Ctrl+ Alt+ P

I Introduce variable: Ctrl+ Alt+ V

I Rename: Shift+ F6

I Inline: Ctrl+ Alt +N

I Change signature: Ctrl+ F6

See more here as well as in subpages: https://www.jetbrains.

com/help/idea/refactoring-source-code.html

13 / 69

https://www.jetbrains.com/help/idea/refactoring-source-code.html
https://www.jetbrains.com/help/idea/refactoring-source-code.html

Eclipse Refactoring

Eclipse has a built-in refactoring tool (on the Refactor menu).

Many of its refactoring operation can be grouped in three broad
classes . . .

14 / 69

Eclipse Refactoring I:
Renaming and physical reorganization

A variety of simple changes.

For example:

I Rename Java elements (classes, fields, methods, local
variables)
I On class rename, import directives updated
I On field rename, getter and setter methods also renamed

I Move classes between packages

Eclipse applies these changes semantically

I Much better than syntactic search-and-replace

15 / 69

Eclipse Refactoring II:
Modifying class relationships

Heavier weight changes. Less used, but seriously useful when they
are used.

For example:

I Move methods or fields up and down a class inheritance
hierarchy.

I Extract an interface from a class

I Turn an anonymous class into a nested class

16 / 69

Eclipse Refactoring III: Intra-class refactorings

The most used types of refactoring: rearranging code within a
class to improve readability etc.

For example:

I Extract Method: pull code block into new method.
I Good for shortening method or making block reusable
I Can also extract local variables and constants

I Encapsulating fields in accessor methods.

I Change the type of a method parameter or return value

17 / 69

Safe refactoring

How do you know refactoring hasn’t changed/broken something?

Perhaps somebody has proved that a refactoring operation is safe.

More realistically:

test, refactor, test

This works better the more tests you have: ideally, unit tests for
every class.

18 / 69

Bad smells in code

Suggest that the quality of your code is decaying.

Examples:

I Duplicated code

I Long method

I Large class

I Long parameter list

I Lazy class

I Long message chains

Catalogues of bad smells explain how to recognise them and what
refactorings can help.

19 / 69

Reading

Essential: ’Tutorial: Introduction to Refactoring’ produced by
IntelliJ: https://www.jetbrains.com/help/idea/
tutorial-introduction-to-refactoring.html

Essential: Browse around Fowler’s page at
http://refactoring.com/. Some of his book Refactoring is
available on Google Books e.g., details of some of the
refactorings in the catalogue.

Essential: Search code smells. One catalogue can be found at
https://refactoring.guru/refactoring/smells.

20 / 69

https://www.jetbrains.com/help/idea/tutorial-introduction-to-refactoring.html
https://www.jetbrains.com/help/idea/tutorial-introduction-to-refactoring.html
http://refactoring.com/
https://refactoring.guru/refactoring/smells

Reading

Recommended: Browse through the Code Refactoring page and
subpages of IntelliJ IDEA for full information on IntelliJ’s
current capabilities: https://www.jetbrains.com/help/

idea/refactoring-source-code.html

Recommended: If you are using Eclipse, browse through the
Eclipse Java development user guide for full information on
Eclipse’s current capabilities: https://www.linuxtopia.org/

online_books/eclipse_documentation/eclipse_java_

development_guide/topic/org.eclipse.jdt.doc.user/

concepts/eclipse_java_concept-refactoring.htm

21 / 69

https://www.jetbrains.com/help/idea/refactoring-source-code.html
https://www.jetbrains.com/help/idea/refactoring-source-code.html
https://www.linuxtopia.org/online_books/eclipse_documentation/eclipse_java_development_guide/topic/org.eclipse.jdt.doc.user/concepts/eclipse_java_concept-refactoring.htm
https://www.linuxtopia.org/online_books/eclipse_documentation/eclipse_java_development_guide/topic/org.eclipse.jdt.doc.user/concepts/eclipse_java_concept-refactoring.htm
https://www.linuxtopia.org/online_books/eclipse_documentation/eclipse_java_development_guide/topic/org.eclipse.jdt.doc.user/concepts/eclipse_java_concept-refactoring.htm
https://www.linuxtopia.org/online_books/eclipse_documentation/eclipse_java_development_guide/topic/org.eclipse.jdt.doc.user/concepts/eclipse_java_concept-refactoring.htm

