
Inf2C: Software Engineering
Lecture 19: Verification, validation and testing:
Test automation, test coverage, bug reporting,

alternatives to testing

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh



Last lecture

Verification, validation and testing (”VV&T”)

I Motivation

I Definitions

I Essence of testing

I The ”bug” terminology

I Kinds of tests
I How to test:

I Test-first development
I Test-driven development
I Behaviour-driven development

I Evolving tests

I Limitations of testing

2 / 29



This lecture

I Test automation with JUnit 5
I Main components of a JUnit 5 test class
I Assertion statements in JUnit 5

I Java inline assertions and their alternatives
I Test coverage and tools for it

I The IntellJ IDEA coverage tool

I Bug reporting and tools for it
I Bug reporting with Trac and JIRA

I Alternatives to testing:
I Reviews/walkthroughs/inspections
I Static Analysis and tools for it

3 / 29



Test automation and JUnit

Automation of tests is essential, particularly when tests must be
re-run frequently.

JUnit is a framework for automated testing of Java programs.
You will use JUnit 5 in Coursework 3.

Similar frameworks now available for most languages

4 / 29



Main components of a JUnit 5 test class

A JUnit test is a method annotated with @Test in a test class.

Contents: code to execute the code under test, assert method(s),
usually an informative message if the test fails.

The test method can also have additional annotations:

I @DisplayName("<Name>") for a more readable description of
the test name (spaces allowed) for when it is run.

I @Disabled("reason") to make the test inactive for a reason.

I @Tag("<TagName>") to tag the test; JUnit 5 allows running
tests with a certain tag.

@RepeatedTest(<Number>) can be used instead of @Test to
repeat a test a number of times.

5 / 29



Main components of a JUnit 5 test class

There can also be other methods in a test class, annotated with:

I @BeforeEach: executed before each test, to prepare the test
environment

I @AfterEach: executed after each test to clean up the
environment

I @BeforeAll: executed before all tests in the test class to e.g.
connect to a database

I @AfterAll: executed after all tests to e.g. disconnect from a
database

6 / 29



Assertions

JUnit provides a library of assert methods to use in test code for
checking output of the program being tested.

Typical use:

assertEquals(expectedResult, obj.yourMethod());

7 / 29



Assertions

Some alternatives to assertEquals:

Each of these can also get as an extra parameter a custom error
message (String) to be displayed when the assertion fails.

8 / 29



Inline assertions

Checks can also be spread throughout the program code itself.

Goals: record assumptions throughout the code; do ’sanity checks’
during execution; turn faults into failures (AssertionError exception
errors raised on failure)

Examples:

I public static double sqrt (double x){

assert x>=0;

/*...*/

}

I int numWheels = 2 * numBikes;

/* ... */

numWheels+ = 2;

/* ... */

assert numWheels % 2 == 0;

Such assertion checking can be switched on/off.

9 / 29



Alternatives to inline assertions

Don’t do this: overly defensive programming

public static double sqrt (double x){

if (x<0){

return NAN;

}

/* ... */

}

Usually a bad idea, as it carries faults across. Better to find and
avoid faults, than to hide them.

10 / 29



Alternatives to inline assertions

Why not always handle errors properly, by using defensive
programming with error handling?

public static double sqrt (double x)

throws NegativeArgumentException{

if (x < 0){

throw NegativeArgumentException{"Cannot take the

square root of a negative number"};

}

/* ... */

}

Pros: program will fail gracefully (as opposed to inline assertions).

Cons: checking inputs everywhere this way leads to duplicated code
between classes. Often better to only do this at the level of the UI.
In this case, inline assertions still useful to catch other faults.

11 / 29



Test coverage

Test coverage is a measure of the degree to which the source code
of a program is executed by its tests.

Checking coverage and ensuring that tests achieve a high enough
level of coverage is often done during white-box testing.

Some types of test coverage:

I Statement coverage: what percentage of the lines of the code
were executed by at least one test?

I Branch coverage: what percentage of the branches of the
code were executed by at least one test?

I Basic condition coverage, modified condition/decision
coverage, path coverage, . . .

We will only look at statement and branch coverage in this course.

12 / 29



Statement and branch coverage

Example:

void decideGreater (int a, int b){

if (a > b)

System.out.println("a is greater than b");

}

One test where a = 5 and b = 4 (or any number of tests where
value of a > value of b):

I We achieve 100% statement coverage because the test would
exercise all lines of code.

I But do we have 100% branch coverage?
I No, because we never execute the branch of the code in which

a > b is false.

13 / 29



Statement and branch coverage

We can add tests where the value of a <= value of b.

We then find that these tests do not print the expected ”b is
greater or equal to a” (i.e. they fail), and we can fix the code:

void decideGreater (int a, int b){

if (a > b)

System.out.println("a is greater than b");

else

System.out.println("b is greater or equal to a");

}

Coverage has helped unveil an unconsidered case in the code.

Things more complicated when we have combinations of (complex)
nested conditions.

14 / 29



Statement and branch coverage

100% branch coverage guarantees 100% statement coverage.

But 100% statement doesn’t guarantee 100% branch coverage!

They help realise whether we have missed any code or its branches
in out tests, and may help reveal bugs, but:

I Achieving high (even 100%) coverage does not mean code is
bug-free! E.g. maybe not all classes of inputs considered

I It may be easy to achieve high coverage without proper testing

I It may be impossible to achieve 100% coverage, e.g. dead
code, branches that can never be reached

I Other types of coverage, e.g. path, complicate things a lot!

In general, such testing should be combined with black-box testing.

15 / 29



Test coverage tools in general and in IntelliJ IDEA

There are numerous:

I Open-source code coverage tools for Java with JUnit:
CodeCover, EMMA, Gretel, JaCoCo, Quilt.

I Commercial test coverage tools: Atlassian Clover, Testwell.

IntelliJ IDEA has its own test coverage tool, as well as the
possibility to integrate with JaCoCo and EMMA.

16 / 29



Test coverage in IntelliJ IDEA

17 / 29



Test coverage in IntelliJ IDEA

18 / 29



Bug tracking

How does one keep track of bugs, the status of addressing them
and splitting this work within a team?

Many projects use a bug tracking system for both bug reports and
new feature requests.

Open source tools include: Bugzilla, Gnats, Trac , RT (used by our
support), MantisBT, Redmine and others.

Commercial tools include: JIRA, Axosoft, HP ALM/ Quality
Center, BugHost, IBM Rational ClearQuest

These provide extensive support for receiving, tracking, notifying,
monitoring, etc.

We will look at Trac and JIRA (very popular, free for teams
smaller than 10).

19 / 29



Bug tracking: Trac

20 / 29



Bug tracking: Trac

21 / 29



Bug tracking: Jira

22 / 29



Bug tracking: Jira

23 / 29



Alternatives to testing: 1.
Reviews/walkthroughs/inspections

One complementary approach is to get a group of people to look
for problems.

This can:

I find bugs that are hard to find by testing,

I discover when requirements have been misunderstood,

I spot unmaintainable code,
I work on non-executable things:

I e.g. requirements specification, UML model, test plan.

Of course the author(s) of each artefact should be looking for such
problems – but it can help to have outside views too.

For our purposes reviews/walkthroughs/inspections are all the
same; “Review” for short.

24 / 29



Alternatives to testing: 2. Static Analysis

Static analysis involves automatically (more or less) inspecting
code to determine properties of it without running it. This is a
very active area for research.

E.g. Type-checking during compilation is a basic kind of static
analysis.

Tools vary in what problems they address, e.g.

I runtime exception issues (e.g. null pointer exceptions, array
index out of bounds)

I correctness of pre/post-condition specification of methods

I concurrency bugs e.g. race conditions

25 / 29



Alternatives to testing: 2. Static Analysis- Trade-offs

When more complicated properties checked, tools generally

I can analyse only smaller programs,

I are less automated (e.g. annotations required)

As tools more automated and designed to work on larger programs,
they often cannot

I guarantee every problem flagged is a real error,

I find every error.

Can think of such tools more as bug-hunting tools rather than
tools ensuring correctness.

26 / 29



Static analysis tools for Java

SpotBugs (FindBugs) is relatively widely used: looks for bug
patterns, code idioms that are often errors

ThreadSafe from the Informatics spinout Contemplate focusses
on finding concurrency bugs
http://www.contemplateltd.com/threadsafe

Infer from Facebook applies lightweight static analysis techniques
that scale to 106+ LOC. Finds e.g. concurrency and null pointer
exception issues.

Give SpotBugs or Infer a try!

27 / 29

http://www.contemplateltd.com/threadsafe


Reading

Essential: Prepare to be able to write tests in JUnit 5:

I http://www.junit.org
I JUnit Tutorial http:

//www.vogella.com/articles/JUnit/article.html
I JUnit 5 Tutorial: Writing Assertions With JUnit 5

Assertion API https:
//www.petrikainulainen.net/programming/testing/

junit-5-tutorial-writing-assertions-with-junit-5-api/
I Writing tests in JUnit 5: https://blog.jetbrains.

com/idea/2020/09/writing-tests-with-junit-5/
I Testing in IntelliJ IDEA and sublinks: https://www.

jetbrains.com/help/idea/tests-in-ide.html

28 / 29

http://www.junit.org
http://www.vogella.com/articles/JUnit/article.html
http://www.vogella.com/articles/JUnit/article.html
https://www.petrikainulainen.net/programming/testing/junit-5-tutorial-writing-assertions-with-junit-5-api/
https://www.petrikainulainen.net/programming/testing/junit-5-tutorial-writing-assertions-with-junit-5-api/
https://www.petrikainulainen.net/programming/testing/junit-5-tutorial-writing-assertions-with-junit-5-api/
https://blog.jetbrains.com/idea/2020/09/writing-tests-with-junit-5/
https://blog.jetbrains.com/idea/2020/09/writing-tests-with-junit-5/
https://www.jetbrains.com/help/idea/tests-in-ide.html
https://www.jetbrains.com/help/idea/tests-in-ide.html


Reading

Essential On inline assertions in Java (focus on the Preconditions,
Postconditions, and Class Invariants):
https://docs.oracle.com/javase/7/docs/technotes/

guides/language/assert.html

Essential: On statement and branch coverage:
https://www.guru99.com/code-coverage.html

Recommended: On unit testing and coverage in IntelliJ IDEA:
https://www.youtube.com/watch?v=QDFI19lj4OM

Recommended: JIRA bug tracking: https:

//www.atlassian.com/software/jira/bug-tracking

Recommended: SpotBugs: https://spotbugs.github.io/

Recommended: Infer: https://fbinfer.com/

29 / 29

https://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html
https://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html
https://www.guru99.com/code-coverage.html
https://www.youtube.com/watch?v=QDFI19lj4OM
https://www.atlassian.com/software/jira/bug-tracking
https://www.atlassian.com/software/jira/bug-tracking
https://spotbugs.github.io/
https://fbinfer.com/

