
Inf2- SEPP
Lecture 20: Software deployment and

maintenance

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh



Up until now

I Requirements engineering

I Design

I Construction/implementation

I Refactoring

I Verification, validation and testing

2 / 12



This lecture

I Deployment
I What is deployment
I Is deployment the reason why software projects fail?
I Key issues around deployment

I Maintenance
I What is maintenance?
I Maintenance challenges
I Being disciplined in software evolution: Release management
I Maintenance technique: Re-engineering

3 / 12



What is deployment?

Getting software out of the hands of the developers into the hands
of the users.

Some stats on software projects:

I More than 50% of commissioned software is not used, mostly
because it fails at deployment stage.

I 80% of the cost of (commissioned) software comes at and
after deployment.

4 / 12



Is deployment the problem?

Not always.

Often, problems show up at deployment which are actually failures
of requirements engineering.

Such problems can be very hard or impossible to fix, in a large
system. e.g. National Programme for IT

However, there are also genuine transition issues.

5 / 12



Key issues around deployment

I Business processes. Most large software systems require
customers to change the way they work. Has this been
properly thought through?

I Training. No point in deploying software if its customers can’t
use it.

I Deployment itself. How physically to get the software
installed.

I Equipment. Is the customer’s hardware up to the job?

I Expertise. Does the customer have the IT expertise to install
the software?

I Integration with other systems of the customer.

6 / 12



Deployment itself

Tools are available to help you deploy software. Such systems can:

I make the system installable on different platforms

I package the software

I make it available (nowadays over Internet or on DVD)
I give the user turn-key installers, which will:

I check the system for missing dependencies or drivers etc.
I install the software on the system
I set up any necessary licence managers
I . . .

7 / 12



What is maintenance?

The process of changing a system after it has been delivered.

Kinds

I Fixing bugs and vulnerabilities:
not only in code, but also design and requirements

I Adapting to new platforms and software environments:
e.g. new hardware, new OSes, new support software

I Supporting new features and requirements:
necessary as operating environments change and in response
to competitive pressures

8 / 12



Maintenance challenges

I Popularity of maintenance work
I unpopular – seen as less skilled, can involve obselete languages

I Often a new team has to understand the software

I Development and maintenance often separate contracts
I De-incentivises developers paying attention to maintainability.

I How software structure changes over time
I Structure degrades, making maintenance harder
I Not only code impacted, also other software aspects,

e.g. user documentation

I Working with obselete compilers, OSes, hardware

9 / 12



Being disciplined in software evolution: Release
management

Discipline in the evolution of software is (at least) as important as
in its development.

I gather change requirements: new features, adapting to
system/business change, bug reports

I evaluate each; produce proposed list of changes

I go through normal development cycle to implement changes –
ensuring that you understand the software, which may be
non-trivial.

I issue new release

Unfortunately, emergencies happen, and things have to be done
with urgency. If at all possible, go through the normal process
afterwards.

10 / 12



Maintenance technique: Re-engineering
Re-engineering is the process of taking an old or unmaintainable
system and transforming it until it’s maintainable. This may be
considerably less risky and much cheaper than re-implementing.

Re-engineering may involve:

I Source code translation e.g. from obsolete language, or
assembly, to modern language.

I Reverse engineering i.e. analysing the program, possibly in the
absence of source code.

I Structure improvement, especially modularization,
architectural refactoring

I Data re-engineering, reformatting and cleaning up data.
I Adding adapter interfaces to users and newer other software

Issues:

I What are the requirements?
I Which bugs do you deliberately preserve?

11 / 12



Reading

Recommended: Sommerville SE Chapter 9: ”Software
maintenance”

12 / 12


