
Inf2- SEPP
Lecture 21 part 1:

Construction, Testing, Deployment &
Maintenance in Plan-Driven vs Agile Software

Development Processes.
DevOps (Development + Operations)

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh



Quite a few lectures ago . . .

I The basics of plan-driven vs agile processes (Lecture 2).

I Requirements engineering in plan-driven vs agile processe
(Lecture 6)

I Design in plan-driven vs agile processes (Lecture 12)

2 / 19



Last few lectures

I Construction

I Verification, validation and testing

I Deployment and maintenance

in general.

3 / 19



This lecture

I Construction (implementation) in plan-driven vs agile
processes:
I Differences in process
I Some myths about agile and high quality code

I Testing in plan-driven vs agile
I Differences in process
I Some myths about agile and high software quality

I Differences between plan-driven and agile teams in terms of
construction and testing

I Deployment and maintenance in plan-driven vs agile processes
and the emergence of DevOps (Development + Operations)

I DevOps advantages, principles, automation

4 / 19



Construction- Differences in process between plan-driven
and agile

Plan-driven software development processes:

I Each SE activity is a separate stage

I Construction (implementation) is one of the stages

Agile software development processes:

I Construction (as well as design) main focus of each iteration
because prioritisation of ’working software’

I Requirements engineering interleaved with design and
construction in each iteration

I Each iteraton concerned with developing a subset of features

5 / 19



Myths about agile and high-quality code

Myth 1: ’Code is the only documentation’, concluded from
’Working software over comprehensive documentation’

I Wrong!

I The point is that effort should be made into making code as
readable and clear as possible

I Of course, not everybody does this well!

I Documentation still exists, but it is kept ’lightweight’

See this article by Fowler:

https:

//martinfowler.com/bliki/CodeAsDocumentation.html

6 / 19

https://martinfowler.com/bliki/CodeAsDocumentation.html
https://martinfowler.com/bliki/CodeAsDocumentation.html


Myths about agile and high-quality code

Myth 2: ’In agile, construction leads to better code quality’

I Wrong!

I Agile in general has nothing to do with code quality

I Some agile processes (e.g. Scrum) focus on the quality of the
process, not that of the technical quality

I Exception: XP (coding standards, pair programming practices)

I Risk of iterative nature of process to degrade the design and
quality of code

One of the authors of the Agile Manifesto, Robert Martin, even
wrote code quality books, e.g. ” Clean Code: A Handbook of Agile
Software Craftsmanship”

7 / 19



Testing- Differences in process between plan-driven and
agile

Plan-driven software development processes:

I Testing is a a stage in itself

I Often done late in the software development, when anything
is expensive to fix

I Black box tests are based on the requirements usually written
by the requirements engineers or business analysts long before
starting to write any code

I Often ends up being ’squished’ at the very end, risking not to
be done thoroughly, because of delays and approaching
deadline

8 / 19



Testing- Differences in process between plan-driven and
agile

Agile software development processes:

I At the end of each small iteration the code is tested

I Many (but not all!) agile teams nowadays use the test-driven
development (TDD) approach, coming up with tests only
days/hours before the coding of the next features

I Use of functional tests derived from business experts

I Acceptance testing and feedback from users at end of each
iteration

I Increased need for test automation to speed up testing and
development

9 / 19



Some myths about agile, testing and high software quality

Myth 1: Some testers fear to transition to agile development
because it ’equates with chaos, lack of discipline, lack of
documentation, and an environment that is hostile to testers’

I Wrong for companies doing agile well

I True agile is about valuing team members, repeatable quality,
efficiency.

10 / 19



Some myths about agile, testing and high software quality

Myth 2: ’Agile is all about speed’

I Wrong for companies doing agile well

I Agile is intended to be all about producing high-quality
software in a time that maximizes its business value

Recommended reading: Lisa Crispin: ”Agile Testing: A Practical
Guide For Testers And Agile Teams” Chapter 1.

11 / 19



Differences between plan-driven and agile teams in terms
of construction and testing

Teams in plan-driven software development processes:

I Individual programmers working on their own part of the code

I Developers needing to follow the requirements, and having no
say about the features and functionality

I Testers seen as primarily responsible for quality, with limited
control of how the code is written

12 / 19



Differences between plan-driven and agile teams in terms
of construction and testing

Teams in agile software development processes:

I Whole-team approach to development and testing, with
common goal of producing high-quality software

I Team members seen as important within the team

I Constant collaboration between programmers, testers,
(potential) customers, other experts

13 / 19



Deployment and maintenance in plan-driven vs agile
processes and the emergence of DevOps

Traditionally, development, deployment and customer support
different teams, including in companies adopting agile.
Maintenance also potentially a separate team. Effects:

I Communication delays between teams, leading to days until
bugs or security vulnerabilities addressed and a new release
made available to customers

I Different tools and skill sets between teams, not
understanding each other, culture of mistrust

Even in agile teams, not enough collaboration between
development and operations (deployment and support) teams, and
not enough documentation to fall back to.

14 / 19



Deployment and maintenance in plan-driven vs agile
processes and the emergence of DevOps

Solution: in 2008, Andrew Clay and Patrick Debois came up with
DevOps (Development+Operations) set of practices.

DevOps has become quite a buzzword, and is considered an
outgrowth or extension of agile development beyond code.

It is particularly suited to software products.

15 / 19



DevOps: Overview, advantages

DevOps= the integration of development and operations
(deployment, customer support) within a single team responsible
for all these activities.

Advantages

I Faster deployment, due to reduced communication delays

I Reduced risk: the possibility to produce frequent increments
for release, and identify causes of failures and outages easier

I Faster repair: all working together rather than waiting for
responsible team to fix each issue

I More productive teams; IMPORTANT! This heavily relies on
organisational culture and the need for mutual respect and
sharing.

16 / 19



DevOps principles

I Everyone is responsible for everything

I Everything that can be automated should be automated

I Measure first, change later: DevOps processes and tools
continually adapted based on the data collected.

17 / 19



DevOps automation

Continuous integration (from XP)= creating and testing an
integrated version of the system each time a change is committed
to the shared code repository.

Continuous delivery= testing the system in a replica of a
production environment to ensure that environmental factors do
not lead to bugs, each time a change is made.

Continuous deployment (for cloud-based systems only)= deploying
a system as a cloud service after each change is made to it.

Infrastucture as code= automatically updating software on a
company’s servers using a model of the infrastructure written in
machine-processable language.

Homework: read advantages from Sommervile ESP Chapter 10.

18 / 19



Reading

I Essential: This article by Martin Fowler: https:

//martinfowler.com/bliki/CodeAsDocumentation.html

I Recommended if you can get a copy of the book: Lisa Crispin:
”Agile Testing: A Practical Guide For Testers And Agile
Teams” Chapter 1.

I Essential: Sommervile ESP Chapter 10 apart from 10.1.1

19 / 19

https://martinfowler.com/bliki/CodeAsDocumentation.html
https://martinfowler.com/bliki/CodeAsDocumentation.html

