
Inf2: Software Engineering and Professional
Practice

Lecture 2: Introduction to Software Development
Activities and Processes

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh



Summary

I Overview of software engineering activities

I Notion of a software development process

I Brief history of software engineering

I Software projects vs software products

I Introduction to plan-driven and agile software development
processes

2 / 23



Software engineering activities

Activites include:
I requirements capture

I design

I construction/implementation

I testing, debugging

I maintenance/evolution

A software (development) process is a description of how the
above activities are ordered, planned and monitored.

The management of the software process is also a key software
engineering activity

3 / 23



Requirements capture

Identifying what the software must do (not how).

Interesting issues:

I Multiple stakeholders often with different requirements – how
to resolve conflicts?

I Prioritisation. Which requirements should be met in which
release?

I Maintenance: managing evolving requirements.

4 / 23



Design

Requirements: what the software must do.

Design: how should it do that?

Higher level than code.
Often involves use of a modelling language (e.g. UML)

Multiple levels of design:

I architectural design

I high-level design

I detailed design

Interesting issues: understandability (“elegance”); robustness to
requirement change; security; efficiency; division of responsibility
(“buildability”).

5 / 23



Construction/implementation

More general than “coding”, includes:

I detailed design (the level that doesn’t get written down)

I coding

I unit testing

I managing code evolution

I writing developer-oriented documentation

Interesting issues: scale: managing large amounts of detail, esp.
code. Need systems that work when it’s not possible for one
person to know everything.

6 / 23



Testing and debugging

Testing happens at multiple levels, from unit tests written by
developer, to customer acceptance testing.

Debugging covers everything from
“which line of code causes that crash?” to
“why can’t users work out how to do that?”.

Interesting issues: containing cost – how to test and debug
efficiently; when to write tests; software tools to support testing
and debugging

7 / 23



Maintenance/Evolution

Any post-(major)-release change.

I fixing bugs

I enhancing existing functionality

I coping with a changing world

I improving maintainability

Traditionally an after-thought - mistakenly!

In the “total cost of ownership” (TCO) of software system,
maintenance/evolution costs often dwarf development costs.

Interesting issues:
retaining flexibility;
when to evolve system and when to replace

8 / 23



What are processes about?

Processes are about

I ordering activities

I outcomes of activities.

I arrangement of people & resources to carry out activities

I planning in advance of execution, predicting
time/cost/resources

I risk reduction

I monitoring

I enabling their own adaptation

Processes complex and creative.

9 / 23



Brief history of software engineering: origins

I 1935: Alan Turing: idea of ”software” as a computer program

I 1958: John Tukey used ”software” term in print

I 1963/4: Margaret Hamilton (Apollo 11, Skylab space shuttle)
first coined the term ”software engineering” to distinguish her
work from hardware enineering and give it legitimacy

I 1960s-1980s: ”software crisis” due to rapid computing power
increase at decreasing cost and difficulties to develop large
complex software systems

I 1968-1969: NATO conferences on software engineering

10 / 23



Brief history of software engineering: the 1970s-early 1990s

I Microcomputer revolution

I Software engineering develops as a discipline

I Virtually all professional software meant to automate
businesses: custom, ”one-off”, usually long-life

I Software projects set up to develop such systems: external
customers required (through contract: the requirements
document) and paid for custom functionality, the
development, maintenance of the system, and any changes

I Development of plan-driven software development processes:
controlled and rigurous ways of developing software;
assumption that a lot of preparation is needed before writing a
program; need for thorough documentation including
graphical models of the software

11 / 23



Brief history of software engineering: since the 1990s

I Realisation that most businesses could manage with generic
software built for common problems (cheaper, quicker to get)

I Increase in the need for small to medium software systems

I Dissatisfaction with plan-driven approach due to considerable
overheads, late delivery, difficulty to respond to changes

I Developers started coming up with generic software products,
with full control over their features, implementation and
lifetime; paying customers only after release

I Development of agile software development processes: focus
on software itself; delivering working software quickly to
customers; avoiding work with dubious long-term benefits;
reducing documentation

12 / 23



Project vs product based software engineering

Project-based SE Product-based SE
Initiated by an external customer who presents
a problem Initiated by the developer who identifies an opportunity
Requirements captured from customer starting
from problem Features decided by developer starting from oportunity
Developed based on customer needs defined
in requirements Developed as generic solution, not for specific customer
Long-lived, maintained for customer Life duration decided by developer
Changes decided and paid by customer Changes decided by the developer

Important notes:

I These were typical of the described moments in history.
However, not all systems were the same and characteristics
can be mixed.

I Plan-driven best suited for software projects, and agile for
software products, with processes in their pure forms

I In reality, processes and system types may be swapped;
Moreover, the two types of processes often mixed.

13 / 23



Brief history of software engineering: another approach
since the 2000s

I More reuse of existing software rather than developing
software from scratch: integration, configuration for customer

I Development of reusable software (stand-alone application
systems, reusable components or packages, web services)

I Adoption of reuse-based development processes: mix of
plan-based and agile, because requirements gathered in
advance but things can be changed and components
reconfigured, often incremental (like in agile, see below)

14 / 23



Plan-driven processes- introduction

“Plan-driven processes are processes where all the process
activities are planned in advance and progress is measured against
this plan” (Ian Sommerville)

15 / 23



Plan-driven processes- main characteristics and
applicability

I A lot of time and effort are spent in planning the system

I Everything is thoroughly documented; attempt to always keep
documentation up-to-date

I Use of modelling (e.g. UML) for documenting requirements
and design

I The system is specified in detail before implementation begins

I Errors, omissions and misunderstandings in the requirements
often discovered late in the implementation (costly to fix)

I Reticence to change; inability to respond quickly to it

I Most appropriate for long lifetime, critical and embedded
systems

16 / 23



Agile processes- introduction

The Agile Manifesto http://agilemanifesto.org:

”We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we
have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer* collaboration over contract negotiation
Responding to change over following a plan
That is, while there is value in the items on the right, we
value the items on the left more.”

IMPORTANT! By ”customer” meant initiator of requirements
(even business person from development company!) here and in
following slides.

17 / 23

http://agilemanifesto.org


Agile flowchart

18 / 23



12 principles of agile (from Agile Manifesto)

1. ”Highest priority is to satisfy the customer through early and
continuous delivery of valuable software”.

2. ”Welcome changing requirements, even late in development”.

3. ”Deliver working software frequently: couple of weeks - couple
of months, with a preference to the shorter timescale”.

4. ”Business people and developers must work together daily”.

19 / 23

http://agilemanifesto.org


12 principles of agile (from Agile Manifesto)

5. ”Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done”.

6. ”The most efficient and effective method of conveying
information (. . . ) is face-to-face conversation”.

7. ”Working software is the primary measure of progress”.

8. ”Sustainable development (. . . ) to maintain a constant pace
indefinitely”.

20 / 23

http://agilemanifesto.org


12 principles of agile (from Agile Manifesto)

9. ”Continuous attention to technical excellence and good design
enhances agility”.

10. ”Simplicity – the art of maximizing the amount of work not
done – is essential”.

11. ”The best architectures, requirements, and designs emerge
from self-organizing teams”.

12. ”At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behavior
accordingly”.

21 / 23

http://agilemanifesto.org


Where to apply plan-driven vs agile processes

22 / 23



Reading

I Essential:
I On software engineering activities: Sommerville SE Chapter 2

section 2.2.
I On software projects and software products and their

engineering: Sommerville ESP Chapter 1 up to 1.1.
I On software development processes (overview): Sommerville

SE Chapter 2 until 2.2
I On intro to agile software development processes (and

comparison with plan-driven): Sommerville ESP Chapter 2 up
to 2.2.

I An excellent overview of processes by Ian Sommerville:
https://www.youtube.com/watch?v=q8X2Rk5sRFI&t

I Recommended:
I Stevens Chapter 1
I The Agile Manifesto: http://agilemanifesto.org/

23 / 23


