
Inf2: Software Engineering and Professional
Practice

Lecture 5: Use Cases, UML Use Case Diagrams

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh



This lecture

I Use cases
I Notions of a use case, actor, use case scenario (instance)
I A template for describing use cases
I Connections and scope of use cases
I Use case diagrams defined by the Unified Modelling Language
I Requirements engineering organised by use cases
I Uses and problems with use cases

2 / 26



Introduction to Use cases

I An important part of any requirements document for a system
is a description of the system’s behaviour from the viewpoint
of its users.

IMPORTANT NOTE Here, a user is anything external to the
system which interacts with it, e.g. a human user, another
system, a hardware device, etc.

I Behaviour can be broken down into units, each triggered by
some user .

I Use cases are one way of describing these units

3 / 26



What is a use case?

A “task or coherent unit of functionality which the system is
required to support”, and which has value for at least one user
(see previous IMPORTANT NOTE).

(Stevens Chapter 7).

Named beginning with a verb

E.g. ”Log in’, ’Buy a Product’, ’Complete returns form’, ’Log out’
can all be use case names.

4 / 26



Actors in use cases

Actors are a kind of user (see previous IMPORTANT NOTE) who
take an active part in the use case.

An actor can be:

I a human user of the system in a particular role E.g., Bank
Customer and not Mary.

I an external system, which in some role interacts with the
system.

I an external device, which in some role interacts with the
system.

The same human user, external system or device may interact with
the system in more than one role, and thus be (partly) represented
by more than one actor (e.g., a bank teller may happen also to be
a customer of the bank).

5 / 26



Actors in use cases

The primary actor usually is the one (there can only be one!)
triggering the use case. E.g. Customer can trigger ’Buy a Product’

Supporting actors may also be involved

Some stakeholders may be neither primary nor supporting actors

Each use case

I has a discrete goal the primary actor wishes to achieve; Short
verb phrase used as name of use case.

I includes a description of the sequence of messages exchanged
between the system and actors (primary or supporting) in
order to achieve the goal.

6 / 26



Exercise 1: Identify all the actors

A university provides a submit system that students can use to
submit their coursework, and later retrieve marks and feedback.
Before a course begins, the configuration for that course is set up
by the EUCLID student record system interacting with our system.
Thereafter, any student can submit work onto the system, and the
lecturer can retrieve the work submitted so far. Once marking is
ready, lecturers and markers can submit marks and feedback on the
system, which notifies the students.

7 / 26



Exercise 1: Identify all the actors

A university provides a submit system that students can use to
submit their coursework, and later retrieve marks and feedback.
Before a course begins, the configuration for that course is set up
by the EUCLID student record system interacting with our system.
Thereafter, any student can submit work onto the system, and the
lecturer can retrieve the work submitted so far. Once marking is
ready, lecturers and markers can submit marks and feedback on the
system, which notifies the students.

Answer: Student, StudentRecordSystem (role, not name!),
Lecturer, Marker

8 / 26



Use case scenarios (instances)

Usually a use case describes the main sequence of steps (i.e. path)
necessary to achieve the use case’s goal.

However might be alternative paths, including some handling when
all does not go to plan and the goal is not achieved.

Each path through use case called a use-case instance or scenario

I One talks about the main success scenario and alternate
success or failure scenarios.

A use case is a set of scenarios tied together by a common user
goal.

Warning: Sometimes scenario and use-case are synonyms (but not
in this course!)

9 / 26



Example of use case scenarios (instances)

Goal/ Use case name: Buy a Product

Main Success Scenario (MSS)

1. Customer browses catalogue and selects items to buy

2. Customer goes to check out

3. Customer fills in shipping info

4. System presents full pricing info

5. Customer fills in credit card info

6. System authorises purchase with customer

7. System confirms sale to customer

8. System sends confirmation email to customer

10 / 26



Example of use case scenarios (instances) (cont)

Alternate Scenarios (extensions - variations on MSS)

3a : Customer is regular customer

.1 : System displays current shipping and billing info

.2 : Customer may accept or override these defaults, returns to
MSS at step 4, but skips step 5.

6a . System fails to authorize credit card purchase

.1 : Customer may re-enter credit card information or may cancel

Phrase at the start of an extension is an enabling condition for that
extension

11 / 26



A template for describing use cases

I Goal – what the primary actor wishes to achieve

I Summary – a one or two sentence description of the use case.

I Stakeholders and each’s Interest in the use case

I Primary actor

I Supporting actors

I Trigger – the event that leads to this use case being
performed.

I Pre-conditions/Assumptions – what can be assumed to be
true when the use case starts

I Guarantees – what the use case ensures at its end
I Success guarantees
I Failure guarantees
I Minimal guarantees

I Main Success Scenario

I Alternate scenarios

12 / 26



Use cases: connections and scope

A use case:

I can have different levels of detail
I e.g. depending on where it is used in development process

I may refer to other use cases
I to provide further information on particular steps

I may describe different scopes
I e.g. a system of systems, a single system or a single

component of a system

13 / 26



The Unified Modeling Language

UML is a graphical language for recording aspects of the
requirements and design of software systems.

It provides many diagram types; all the diagrams of a system
together form a UML model.

Mostly tailored to an OO world-view

Often used just for documentation, but in model-driven
development, a UML model may be used e.g. to generate and
update code and database schemas automatically.

Many tools available to support UML

14 / 26



Use case diagrams

Are part of the Unified Modeling Language (UML).

Provide a high level view of all the use cases for a given system.

Are easy to understand in their most basic form, so can be
discussed with customers who are not familiar with UML.

Represent:

I Actors as stick figures with one-word capital names in sungular

I Use cases as named ovals with capital names starting with a
verb

I Possible interactions between actors and use cases as the lines
connecting them

15 / 26



Use case diagrams: A very simple example

Reserve book

Borrow copy

Browse

Borrow journal

Return journal

of book

Extend loan

Return copy

of book

Update

catalogue

JournalBorrower

BookBorrower

Browser

Librarian

16 / 26



Use case generalization

Used to show an is-a relationship: Librarian is-a MemberOfStaff.

Useful for obtaining the one single primary actor for some use cases

17 / 26



Exercise 2: Identify use cases triggered by actors

A university provides a submit system that students can use to
submit their coursework, and later retrieve marks and feedback.
Before a course begins, the configuration for that course is set up
by the EUCLID student record system interacting with our system.
Thereafter, any student can submit work onto the system, and the
lecturer can retrieve the work submitted so far. Once marking is
ready, lecturers and markers can submit marks and feedback on the
system, which notifies the students.

Primary Actor Use cases

Student ?

StudentRecordSystem ?

Lecturer ?

Marker ?

18 / 26



Exercise 2: Identify use cases triggered by actors
A university provides a submit system that students can use to
submit their coursework, and later retrieve marks and feedback.
Before a course begins, the configuration for that course is set up
by the EUCLID student record system interacting with our system.
Thereafter, any student can submit work onto the system, and the
lecturer can retrieve the work submitted so far. Once marking is
ready, lecturers and markers can submit marks and feedback on the
system, which notifies the students.

Answer:

Primary Actor Use cases

Student ’Submit coursework’, ’Retrieve marks and feedback’

StudentRecordSystem ’Set up course configuration’

Lecturer ’Retrieve coursework’, ’Submit marks and feedback’

Marker ’Submit marks and feedback’

19 / 26



Exercise 3: Draw use case diagram

1) Using the derived primary actors and their use cases, draw the
use case diagram.

Primary Actor Use cases

Student ’Submit coursework’, ’Retrieve marks and feedback’

StudentRecordSystem ’Set up course configuration’

Lecturer ’Retrieve coursework’, ’Submit marks and feedback’

Marker ’Submit marks and feedback’

2) Then, also identify any supporting actors and add the possible
interactions between them and use cases.

20 / 26



Exercise 3: Draw use case diagram
1) Solution representing only the possible interactions between
primary actor - use cases.

21 / 26



Exercise 3: Draw use case diagram
2) Adding the possible interactions between supporting actors - use
cases (Student supporting actor in ’Submit marks and feedback’)

22 / 26



Requirements engineering organised by use cases

Use cases can help with requirements engineering by providing a
structured way to go about it:

1. identify the actors

2. for each actor, find out
I what they need from the system
I any other interactions they expect to have with the system
I which use cases have what priority for them

Good for both requirements specification and iterated requirements
elicitation.

Use cases primarily capture functional requirements, but sometimes
non-functional requirements are attached to a use case.

Other times, non-functional requirements apply to subsets or all of
use-cases.

23 / 26



Uses of use cases in software processes

Driving design

Design validation

I You can walk through how a design realises a use case,
checking that the set of classes provides the needed
functionality and that the interactions are as expected.

Testing

I Use cases can be a good source of system tests

24 / 26



Possible problems with use cases

I Interactions spelled out may be too detailed, may needlessly
constrain design

I May specify supporting actors that are not essential for
fulfilling goal of primary actor
I Does borrowing a book have to involve a librarian?

I Focus on operational nature of system may result in less
attention to software architecture and static object structure

I May miss requirements not naturally associated with actors

25 / 26



Reading

Sommerville SE. Use Cases discussed are both in Requirements
and System Modeling chapters. Look up Use Cases in index to
find the relevant sections.

Stevens, Chapter 7.

26 / 26


