
Inf2-SEPP
Lecture 7: Introduction to Design. Architectural

Design

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh



Previous lectures

I Requirements engineering:
I In general, with its concepts and sub-activities
I Using use cases and use case diagrams
I In different types of systems and software development

processes
I Use of personnas, scenarios and user stories in product

engineering

2 / 58



This lecture

Design

I Concept

I Outputs of the design process

I Criteria for good design
I Levels of design

I Architectural design
I Concept and importance of an architecture
I Considerations for architectural design: system decomposition,

distribution, technologies
I Some important architectures

3 / 58



What is design?

Design is the process of deciding how software will meet
requirements.

Usually excludes detailed coding level.

4 / 58



Outputs of design process

Outputs include

I models.
I E.g. using UML or Simulink
I Often graphical
I Can be executable

I written documents
I Important that these record reasons for decisions

5 / 58



(Some) criteria for a good design

I It can meet the known requirements
(functional and non-functional)

I It is maintainable:
i.e. it can be adapted to meet future requirements

I It is straightforward to explain to implementors

I It makes appropriate use of existing technology,
e.g. reusable components

Notice the human angle in most of these points, and the
situation-dependency, e.g.

I whether an OO design or a functional design is best depends
(partly) on whether it is to be implemented by OO
programmers or functional programmers;

I different design choices will make different future changes
easy – a good design makes the most likely ones easiest.

6 / 58



Levels of design

Design occurs at different levels, e.g. someone must decide:

I how is your system split up into subsystems?
(high-level, or architectural, design)

I what are the classes in each subsystem?
(low-level, or detailed, design)

7 / 58



What is an architecture?

”An architecture is the fundamental organisation of a software
system embodied in its components, their relationships to each
other and to the environment, and the principles guiding its design
and evolution” (IEEE)

Pervasive, hence hard to change. An alternative definition is “what
stays the same” as the system develops, and between related
systems.

8 / 58



Other important definitions: component, service, module

A component is ”a named software unit that offers one or more
services to other software components or to end-users of the soft-
ware”. It ”can be anything from a program (large scale) to an
object (small scale)”. (Sommerville ESP)

A service is a ”coherent unit of functionality” (Sommerville ESP)

A module is a ”named set of components” which ”should have
something in common. For example, they may provide a set of
related services” (Sommerville ESP)

9 / 58



Why is architecture important?

I Because it has a fundamental influence on non-functional
(very important!) characteristics of the system:
Non-functional attributes may not all be optimizable
E.g. two components sharing or not a database has different
cost vs. maintainability and resilience effects

I Because it affects the complexity of the software: the more
complex, the less maintainable, more error prone, less secure.
Minimising complexity important goal for architectural design

10 / 58



Architectural design

Involves creating a description of the architecture showing
components and their relationships.

Important architectural design issues to consider:

I Non-functional requirements

I Product lifetime: if long-lived, architecture should be able to
evolve

I Software reuse: saves time, constrains architectural choices

I Number of users: if very variable, architecture should allow
quickly scaling up and down

I Software compatibility: constrains architectural choices

I Planned schedule, team capabilities, budget etc.

11 / 58



Architectural design: trade-offs

I Maintainability vs performance: having fine-grained
components with individual responsibilities and own data
structures good for maintainability, but affects performance
due to communication and data transfer overheads

I Security vs usability: layers of components can help with
security, but affects usability as multiple authentication layers
frustrate users.

I Availability vs time to market and cost: redundant
components help with availability, but at increased cost,
complexity, error proneness.

12 / 58



Architectural design: main questions

1. How should the system be decomposed into a set of
components?

2. (web-bases systems) How should the components be
distributed and communicate?

3. What technologies should be used in developing the system?

13 / 58



1. Decomposing the system into architectural components

Identifying large-scale components, then analysing and splitting
them up into smaller components.

Concerns:

I Some non-functional requirements (e.g. security, performance,
reliability) may be cross-cutting

I Complexity (major concern) due to the number of components
and their relationships, the latter increasing exponentially.

14 / 58



1. Decomposing the system into architectural components

Design guidelines for controlling complexity:

I Separation of concerns: components doing only one thing;
grouping components with related functionality.

I Implement once: not duplicating functionality

I Stable interfaces: hiding a component’s implementation
details behind a component interface (API) so that dependant
components do not need to change when this component
changes

15 / 58



Example: A generic layered architecture for a web-based
application

Taken from: Sommerville, I., 2020. Engineering Software Products. Pearson.

16 / 58



2. The distribution architecture (for web-based systems)

Defines how components are distributed online.

Some well-known architectures:

I Client-server architecture, with some variations:
I Multi-tier client server architecture
I Service-oriented architecture

I Peer to peer architecture

I Message bus architecture

17 / 58



Client-server architecture: high-level view with one server

18 / 58



Client-server architecture: logical view for web-based and
mobile software systems

Clients send requests to servers, which process these requests and
provide a response

Client responsible for user interaction, based on the data moving
between it and the server

Servers initially conducted all processing, now clients are
computers or mobile devices with large processing power so
significant processing on clients

Several servers e.g. web and database

Load balancer distributes requests to servers, ensures even load

Organised frequently using the Model-View-Controller (MVC)
pattern.

19 / 58



Client-server architecture: logical view for web-based and
mobile software systems

Taken from: Sommerville, I., 2020. Engineering Software Products. Pearson.

20 / 58



Client-server architecture variation 1: The multi-tier
client-server architecture

Use of an object-oriented approach (from the 1990s)

Single ”monolithic” system with a shared database

Several communicating servers with different individual
responsibilities and running large software components

Good if using structured data with concurrent updates, and for
business systems running on local servers.

21 / 58



Client-server architecture variation 1: The multi-tier
client-server architecture

Taken from: Sommerville, I., 2020. Engineering Software Products. Pearson.

22 / 58



Client-server architecture variation 2: The service-oriented
architecture

More modern, becoming the norm

Fine-grained services that may be provided by many servers

Services are stateless, so independent and can be replicated,
distributed, migrated between servers

Good if system components need to be updated often, or there is a
need for scalability (e.g. use on the cloud) and resilience to failure

23 / 58



Client-server architecture variation 2: The service-oriented
architecture

Taken from: Sommerville, I., 2020. Engineering Software Products. Pearson.

24 / 58



Peer to peer architecture

25 / 58



Message bus architecture

26 / 58



3. Technological considerations

Technologies need to be decided since architectural design, as
changing them later is difficult and expensive

Technologies to consider:

I Database: relational or NoSQL?

I Delivery platform: browser-based or mobile?

I Server: using the cloud and, if so, what cloud provider?

I Use of open source souftware?

I Development technology: mobile development toolkits, web
application frameworks advantageous?

27 / 58



Resources

Essential: Sommerville ESP Chapter 4

Essential: Sommerville SE 6.1, 6.3.3

28 / 58


