
Inf2-SEPP
Lecture 9 Part 1: Detailed design. Software

design principles

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh



Previous lecture

I Design
I Concept
I Outputs of the design process
I Criteria for good design
I Levels of design

I 1. Architectural design

2 / 12



This lecture

I Levels of design
I 2. Detailed design

I Software design principles
I Cohesion
I Coupling
I Abstraction
I Encapsulation/information hiding
I Separation of interface and implementation
I Decomposition, modularisation

3 / 12



Detailed design

Happens inside a subsystem or component.

E.g.:

I System architecture has been settled by a small team written
down, and reviewed.

I You are in charge of the detailed design of one subsystem.

I You know what external interfaces you have to work to and
what you have to provide.

I Your job is to choose classes and their behaviour that will do
that.

Idea: even if you’re part of a huge project, your task is now no
more difficult than if you were designing a small system.

But: your interfaces are artificial, and this may make them harder
to understand/negotiate/adhere to.

4 / 12



Software Design Principles

Key notions that provide the basis for many different

software design approaches and concepts.

5 / 12



Design Principles: initial example

Which of these two designs is better?

A) public class AddressBook {

private LinkedList<Address> theAddresses;

public void add (Address a) {theAddresses.add(a);}

// ... etc. ...

}

B) public class AddressBook extends LinkedList<Address> {

// no need to write an add method, we inherit it

}

C) Both are fine

D) I don’t know

6 / 12



Design Principles: initial example (cont.)

A is preferred.

I an AddressBook is not conceptually a LinkedList, so it
shouldn’t extend it.

I If B chosen, it is much harder to change implementation, e.g.
to a more efficient HashMap keyed on name.

7 / 12



Design principles 1

Cohesion is a measure of the strength of the relationship between
pieces of functionality within a component.

High cohesion is desirable.

Benefits of high cohesion include increased understandability,
maintainability and reliability.

8 / 12



Design principles 2

Coupling is a measure of the strength of the inter-connections
between components.

Low or loose coupling is desirable.

Benefits of loose coupling include increased understandability and
maintainability.

9 / 12



Design principles 3

I abstraction - procedural/functional, data
The creation of a view of some entity that focuses on the
information relevant to a particular purpose and ignores the
remainder of the information
e.g. the creation of a sorting procedure or a class for points

I encapsulation / information hiding
Grouping and packaging the elements and internal details of
an abstraction and making those details inaccessible

I separation of interface and implementation
Specifying a public interface, known to the clients, separate
from the details of how the component is realized.

10 / 12



Design principles 4

I decomposition, modularisation
dividing a large system into smaller components with distinct
responsibilities and well-defined interfaces

11 / 12



Reading

Essential: Stevens Chapter 1 section 1.3

Recommended: return to any mentions of cohesion, coupling,
abstraction, encapsulation, separation of interface and
implementation, decomposition from your Inf1B course.

Recommended: SWEBOK v3 Ch2 for an overview of the field
of software design

12 / 12


