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What you know / have heard already

* Requirements

* Functional / Non-Functional
e Stakeholders
* Ways to get them

* Use Cases

* Actors, scenarios
* UML
* With Requirements

* Agile and Plan-Driven processes
* Pros / Cons, implications
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Use with caution

* Everything in here is my personal view

* You have a wonderful brain yourself, so take what you want
and leave what you consider inappropriate
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What | want to show you

* Where do you use what, why, how and when

* How to make the most out of use cases and requirements

* Migrate from coder to developer to software engineer
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First things first — a kind of intro...

* Real-life is real-life and sometimes things do not work as
planned or anticipated. The same is true for requirements &
use-cases

* We should try to:
* use best engineering possible
* use best tools for the job
* be as professional as possible
e design future-oriented not backwards looking software
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| love clear specifications

set the involved PPTs to "consent neaded” notification via Kafka

Query C&N (information, links, elc) 1o display
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Reality check

* Designing software (actually anything where there is interaction
between something A and something B) is not only “design and
implementation”

* Designing & Developing SW is more people-skill-centric than
most people anticipate
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So what are you really doing?
Where do you see yourself now, in 5 years, ...

* Coder

e Software developer

* Software designer

» Usability / Experience designer
* Service designer

* Process designer

* Business Analyst
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So how is the normal flow when a project
starts?

e Someone has an idea

* Whow — cool! We need a tool / an extension / a solution
... (time goes on, initial budget for planning is acquired, solution provider identified, etc.)
are taken down

* User stories written, duty book, fine-concept, etc.
* Communication, elaboration

e Change 1

e Change 2

* Legalissue 1

* Legal issue 2

* Budget overrun

* manager changes / has a bad day
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The ideal world?!?

‘Sprint/

‘ Development
User Story / Tasks

Use Case

‘Requirement

Vision / Draft
concept / Idea
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Our Reality (at least very often)

Sprint /
Development
Tasks
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Feedback / Idea

User Story / Use

Case

Everything influences everything (dynamic system...)
Chaos is somehow normal
* The goal is to control (well, better live with)
the chaos to a manageable extent

Feedback loops are important as this is the decisive
moment when we learn!
* Design errors during development
need fixing (requirements + use cases)
* Yet they can be beneficial -> lessons learned

Every innovation will have setbacks during field-use
and will require re-investigation, fixes, etc.
* The steam engine took a long time to be as good
as it is right now (and now we have to find new
ways again...)
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Elaboration Phase
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Construction Phase
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Transition Phase
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SAFe (when you do it really large...)

e SAFe 6.0 (scaledagileframework.com)

* Framework for Team of Teams (Tribe...)
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https://scaledagileframework.com/
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Talking about requirements

* For whom do you do them?
* Do you do them always? When do you do them?
* How / when on the timescale / how often to change

* First things first — people
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Talking about requirements

* As the requirements engineer (very often a role explicitly
given away to an external entity or consulting group!) you
are the advocate of the “users” (all levels) towards the
implementation / development team

* Consider i.e. fear, job-frustration, anxiety, change-reluctance,
... (more on that later)
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Some terminology

* A project can be anything where work is done — it doesn’t
matter which way it is organized or structured.

* In the end it is a “unit of work” which might contain sub-
units
* Every project has a customer which is the one / the instance

who has to pay the bills.
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Stakeholders in a project

(the o Il)
* team-mates & team-manager e End-users
* Planning & organization team

* |t depends... » Manager

* (Scope / Importance)

Higher level management °IT
* Security & policy officer * Security (data, crypto, consumer
« Review management legal rights, ethics, etc.)

 Design (Ul, etc.)
* Higher management
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So whom are you talking to about what?

Planning &

Higher Management

Management

Functional
Requirements

Non-Functional
Requirements

Security
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Requirements — who needs what?

* Users want to find “their” working environment and “their”
story

* Planning & organization teams want to see the broader
vision (as expressed by the management) and the needed
functionality

* The consider cross-issues as well (sometimes...)
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Requirements — who needs what?

* IT needs precise and definitive specs for infrastructure and
runtime environments

* Security has to know what happens with data how (person-
specific data, customer data, who has access, how long,
storage, etc.)

* Management wants to see that you caught the idea and
carry it on
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You need requirements

e They are your contract and life-line (at least part of).

what your software has to fulfill afterwards and
ultimately
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How?

* Whiteboard, Pinboard with cards or mind mapping (kind of
electronic drawing surface)

* \ery nice are pads / touch interfaces (you can draw directly)
* Images are very efficient...

* UML tools are very good for structuring your ideas
* https://cAmodel.com/ (C4 model)

* Requirements are often written down in a duty-book / concept,

etc. as goals and explicitly requirements your software has to
fulfill
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https://c4model.com/

What to keep in mind?

* Beware of the poor sods on the other side!

* no tech-talk or jargon (despite how cool it might be), buzzword-
orgies, keep it simple — plain national language

* Try to listen to those who barely speak — they might be the
ones with the knowledge and just shy / overheard culturally.

* Be extra vigilant when managers are present — nobody talks really
(cultural thing...).

* People are anxious if they are able to use the new feature /
software.
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NFRs

* Nonfunctional Requirements - Scaled Agile Framework
* Hate them or love them, you need them

* They should be:

* Bounded (to a context)

* Independent (of each other)

* Negotiable (as a crucial aspect of economic performance)
» Testable (as objective measures)

* Check out the interesting annotation in the next slide
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https://scaledagileframework.com/nonfunctional-requirements/#:~:text=NFRs%20are%20persistent%20constraints%20on,Markup%20Language)%20is%20a%20constraint.

NFR annotation

Step 1 Step 2
) Name: In the form Quality.SubQuality ) Baseline: Current level
) Scale: What to measure (units) ) Target: Success level to achieve
) Meter: What to measure (units) ) Constraint: Failure to avoid

e

Name: Usability.Efficiency
Scale: Number of times the user decides to set the speed manually
Meter: Average observed results per trip from monitoring

Constraint Baseline Target
.15 times per mile .1 times per mile .01 times per mile

traveled traveled traveled

2,

N

6 Scaled Agile, Inc.

THE UNIVERSITY of EDINBURGH
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Most important

* Requirements analysis is a perfect moment to take stress
and anxiety away and show a way forward which allows
growth and especially participation

* Different communication levels have different agendas and different
requirements for the same thing (e.g. a new feature)
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A simple tip...

* When | jot down notes during a requirements session | have code
marks on the list indicating things for later:

\ Be careful — problems, issues

? Needs additional consideration, some more input needed
‘ Makes happy users — give them a dream
' | like that very much (personal interest, specific feature, etc.)
* General processes are involved and need changing
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So, you got your requirements done?

* Congrats — your work just started...

* Now you need the use cases so you can show them and they
send you back with homework...
* That is called “getting feedback”

e Actually, it is nice — you show people you understood them and
give them a vision and they can appreciate and contribute!
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What are use cases again?

* They describe things done (actions) by a participant (actor)
of the system

* For me they very often describe derived actions as well
* A booking form is used
* A specialized booking form with additional security credentials is used
A calculation is performed
* The calculation changes when XYZ as a pre-condition exists

* They show nicely if different users perform the same or
similar tasks (which allows for generalization / specialization)
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Why | love Use cases

* First of all - | like them and | use them quite often. Mostly
during start-up and then later on as a reference (during
implementation)

* They help me to group my logical building blocks in software
by combining similar functionality

* | can see patterns emerging (e.g. - 4 times a read / write
operation, once a read-only -> read-only must be a special
case and not the “norm”)
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Use case benefits

* If nothing else, use case analysis perfectly clears your mind and
structures your thoughts (well, at least it helps).

* Use cases help to tackle a complex problem by systematic
decomposition into smaller more manageable pieces
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Where do you use them?

* Concept (high-level ones) and sorting out things (usually
mid-level)

* Clarification of ideas with customers (more detailed)
* Check that nothing is forgotten

* Mostly (at least for me) they are the pre-stage for more
complex structural diagrams

;0\“"”"; THE UNIVERSITY of EDINBURGH
5 ] .
¢y informatics
LNy



What comes next?

e Full UML diagrams which combine the use cases, the
requirements and present flows
* Activity
* Composition
* Component
* Collaboration
* Business process
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Different project types, different structures

* Depending on the project type requirement analysis and use
case usage differs

* Fixed price vs time and material
* Internal vs external projects

* Project vs product development is quite different

* Highly structured (waterfall) vs agile (extreme development)
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A word on agile...

* Initial requirement analysis tends to be less then for other
project types

* Agile project by their very nature have a tight feedback loop
(sprints), so anticipate change

* As more functionality is available earlier for user feedback
new requirements are pushed onto the development team
earlier as well
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