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What you know / have heard already

• Requirements
• Functional / Non-Functional

• Stakeholders

• Ways to get them

• Use Cases
• Actors, scenarios

• UML

• With Requirements

• Agile and Plan-Driven processes
• Pros / Cons, implications



Use with caution

• Everything in here is my personal view

• You have a wonderful brain yourself, so take what you want 
and leave what you consider inappropriate



What I want to show you

• Where do you use what, why, how and when

• How to make the most out of use cases and requirements

• Migrate from coder to developer to software engineer



First things first – a kind of intro…

• Real-life is real-life and sometimes things do not work as 
planned or anticipated. The same is true for requirements & 
use-cases

• We should try to:
• use best engineering possible

• use best tools for the job

• be as professional as possible

• design future-oriented not backwards looking software 



I love clear specifications 

https://www.intechopen.com/books/flight-physics-models-techniques-and-technologies/helicopter-flight-physics



Reality check

• Designing software (actually anything where there is interaction 
between something A and something B) is not only “design and 
implementation”

• Designing & Developing SW is more people-skill-centric than 
most people anticipate



So what are you really doing? 
Where do you see yourself now, in 5 years, …

• Coder 

• Software developer

• Software designer

• Usability / Experience designer

• Service designer

• Process designer

• Business Analyst

• …



So how is the normal flow when a project 
starts?
• Someone has an idea

• Whow – cool! We need a tool / an extension / a solution
• … (time goes on, initial budget for planning is acquired, solution provider identified, etc.)
• Requirements are taken down

• Use cases derived / developed
• User stories written, duty book, fine-concept, etc. 
• Communication, elaboration

• …
• Change 1
• Change 2 
• Legal issue 1
• Legal issue 2
• Budget overrun
• manager changes / has a bad day

You are in trouble

You have your great day



The ideal world?!?

Vision / Draft 
concept / Idea

Requirement

User Story / 
Use Case

Sprint / 
Development 
Tasks



Our Reality (at least very often)

Feedback / Idea

Requirement

User Story / Use 
Case

Sprint / 
Development 

Tasks

• Everything influences everything (dynamic system…)
• Chaos is somehow normal

• The goal is to control (well, better live with) 
the chaos to a manageable extent

• Feedback loops are important as this is the decisive
moment when we learn!
• Design errors during development 

need fixing (requirements + use cases)
• Yet they can be beneficial -> lessons learned

• Every innovation will have setbacks during field-use
and will require re-investigation, fixes, etc. 
• The steam engine took a long time to be as good

as it is right now (and now we have to find new 
ways again…)
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Transition Phase

Release 
Branch

Performance 

Regression Test

Integration and 

System Test

Dry Runs

Automation Run

Canary Deployment Production 

Deployment

Release 
Go/No-Go 
Meeting

Postproduction 

Test

Release Affecting 

Bug Fix (S1 and S2)

Deployment

Dry Runs Test

AT-1
Envr.

API & BI Automation 

Test



SAFe (when you do it really large…)

• SAFe 6.0 (scaledagileframework.com)

• Framework for Team of Teams (Tribe…)

https://scaledagileframework.com/




Talking about requirements

• For whom do you do them?

• Do you do them always? When do you do them?

• How / when on the timescale / how often to change

• First things first – people



Talking about requirements

• As the requirements engineer (very often a role explicitly 
given away to an external entity or consulting group!) you 
are the advocate of the “users” (all levels) towards the 
implementation / development team

• Consider i.e. fear, job-frustration, anxiety, change-reluctance, 
… (more on that later)



Some terminology

• A project can be anything where work is done – it doesn’t 
matter which way it is organized or structured. 

• In the end it is a “unit of work” which might contain sub-
units

• Every project has a customer which is the one / the instance 
who has to pay the bills. 



Stakeholders in a project

• Your side

• team-mates & team-manager

• It depends…
• (Scope / Importance) 

Higher level management 
• Security & policy officer
• Review management

• Their side (the “customer”)

• End-users

• Planning & organization team

• Manager 

• IT

• Security (data, crypto, consumer 
legal rights, ethics, etc.)

• Design (UI, etc.)

• Higher management



So whom are you talking to about what?

Planning & 
Organization Team

End users

IT

Higher Management

Management

Security

Functional 
Requirements

Non-Functional 
Requirements

Design 



Requirements – who needs what?

• Users want to find “their” working environment and “their” 
story

• Planning & organization teams want to see the broader 
vision (as expressed by the management) and the needed 
functionality
• The consider cross-issues as well (sometimes…)

Live Examples



Requirements – who needs what?

• IT needs precise and definitive specs for infrastructure and 
runtime environments

• Security has to know what happens with data how (person-
specific data, customer data, who has access, how long, 
storage, etc.)

• Management wants to see that you caught the idea and 
carry it on

Live Examples



You need requirements

• You need them – they are your friend! 

• They are your contract and life-line (at least part of). 

• They define what your software has to fulfill afterwards and 
ultimately if you succeed or fail.



How?

• Whiteboard, Pinboard with cards or mind mapping (kind of 
electronic drawing surface)

• Very nice are pads / touch interfaces (you can draw directly)
• Images are very efficient…

• UML tools are very good for structuring your ideas
• https://c4model.com/ (C4 model)

• Requirements are often written down in a duty-book / concept, 
etc. as goals and explicitly requirements your software has to 
fulfill

Live Examples

https://c4model.com/


What to keep in mind?

• Beware of the poor sods on the other side! 
• no tech-talk or jargon (despite how cool it might be), buzzword-

orgies, keep it simple – plain national language

• Try to listen to those who barely speak – they might be the 
ones with the knowledge and just shy / overheard culturally. 
• Be extra vigilant when managers are present – nobody talks really 

(cultural thing…). 

• People are anxious if they are able to use the new feature / 
software. 



NFRs

• Nonfunctional Requirements - Scaled Agile Framework

• Hate them or love them, you need them

• They should be:
• Bounded (to a context)
• Independent (of each other)
• Negotiable (as a crucial aspect of economic performance)
• Testable (as objective measures)

• Check out the interesting annotation in the next slide

https://scaledagileframework.com/nonfunctional-requirements/#:~:text=NFRs%20are%20persistent%20constraints%20on,Markup%20Language)%20is%20a%20constraint.


NFR annotation

https://scaledagileframework.com/nonfunctional-requirements/#:~:text=NFRs%20are%20persistent%20constraints%20on,Markup%20Language)%20is%20a%20constraint.



Most important

• Requirements analysis is a perfect moment to take stress 
and anxiety away and show a way forward which allows 
growth and especially participation

-> people design software they are going to use afterwards

• Different communication levels have different agendas and different 
requirements for the same thing (e.g. a new feature)
• Management = Cost & Time to market
• Mid-level = functional completeness, will it work with XYZ, can it be extended?
• Users = This is really complicated – how will we be able to use it?



A simple tip…

• When I jot down notes during a requirements session I have code 
marks on the list indicating things for later:

Be careful – problems, issues

Needs additional consideration, some more input needed

Makes happy users – give them a dream

I like that very much (personal interest, specific feature, etc.)

General processes are involved and need changing

?



So, you got your requirements done?

• Congrats – your work just started…

• Now you need the use cases so you can show them and they 
send you back with homework…
• That is called “getting feedback”

• Actually, it is nice – you show people you understood them and 
give them a vision and they can appreciate and contribute!



What are use cases again?

• They describe things done (actions) by a participant (actor) 
of the system

• For me they very often describe derived actions as well
• A booking form is used

• A specialized booking form with additional security credentials is used

• A calculation is performed
• The calculation changes when XYZ as a pre-condition exists

• They show nicely if different users perform the same or 
similar tasks (which allows for generalization / specialization)

Live Examples



Why I love Use cases

• First of all - I like them and I use them quite often. Mostly 
during start-up and then later on as a reference (during 
implementation)

• They help me to group my logical building blocks in software 
by combining similar functionality

• I can see patterns emerging (e.g. - 4 times a read / write 
operation, once a read-only -> read-only must be a special 
case and not the “norm”)



Use case benefits

• If nothing else, use case analysis perfectly clears your mind and 
structures your thoughts (well, at least it helps). 

• Use cases help to tackle a complex problem by systematic 
decomposition into smaller more manageable pieces



Where do you use them?

• Concept (high-level ones) and sorting out things (usually 
mid-level)

• Clarification of ideas with customers (more detailed)

• Check that nothing is forgotten

• Mostly (at least for me) they are the pre-stage for more 
complex structural diagrams



What comes next?

• Full UML diagrams which combine the use cases, the 
requirements and present flows
• Activity 

• Composition

• Component 

• Collaboration 

• Business process

Live Examples



Different project types, different structures

• Depending on the project type requirement analysis and use 
case usage differs

• Fixed price vs time and material

• Internal vs external projects 

• Project vs product development is quite different

• Highly structured (waterfall) vs agile (extreme development) 



A word on agile…
• Initial requirement analysis tends to be less then for other 

project types

• Agile project by their very nature have a tight feedback loop 
(sprints), so anticipate change

• As more functionality is available earlier for user feedback 
new requirements are pushed onto the development team 
earlier as well

• Despite all flow and dynamic change, a global vision (and 
global requirement analysis) is still mandatory as otherwise 
the final solution might deviate (which can be acceptable) 
too much from the initial goal
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