Applied Use Cases and
Requirements Engineering

Michael Glienecke, PhD

Senior Principal Architect
Executive Director

& iniormaiics JP MOI‘g an

What you know / have heard already

* Requirements

* Functional / Non-Functional
e Stakeholders
* Ways to get them

* Use Cases

* Actors, scenarios
* UML
* With Requirements

* Agile and Plan-Driven processes
* Pros / Cons, implications

g\\\“"”"; THE UNIVERSITY of EDINBURGH
= A] -
Awy)- informatics
OiNeY

Use with caution

* Everything in here is my personal view

* You have a wonderful brain yourself, so take what you want
and leave what you consider inappropriate

g\\\“"”"; THE UNIVERSITY of EDINBURGH
= A] -
Awy)- informatics
LNy

What | want to show you

* Where do you use what, why, how and when

* How to make the most out of use cases and requirements

* Migrate from coder to developer to software engineer

g\\\“"”"; THE UNIVERSITY of EDINBURGH
= A] -
Awy)- informatics
LNy

First things first — a kind of intro...

* Real-life is real-life and sometimes things do not work as
planned or anticipated. The same is true for requirements &
use-cases

* We should try to:
* use best engineering possible
* use best tools for the job
* be as professional as possible
e design future-oriented not backwards looking software

g\\\“"”"; THE UNIVERSITY of EDINBURGH
= A] -
Awy)- informatics
LNy

| love clear specifications

set the involved PPTs to "consent neaded” notification via Kafka

Query C&N (information, links, elc) 1o display

5 “Nm’fa_\(THE UNIVERSITY of EDINBURGH
- informatics
IN®

Reality check

* Designing software (actually anything where there is interaction
between something A and something B) is not only “design and
implementation”

* Designing & Developing SW is more people-skill-centric than
most people anticipate

g\\\“"”"; THE UNIVERSITY of EDINBURGH
o A] -
Awy)- informatics
LNy

So what are you really doing?
Where do you see yourself now, in 5 years, ...

* Coder

e Software developer

* Software designer

» Usability / Experience designer
* Service designer

* Process designer

* Business Analyst

g\\\“"”"; THE UNIVERSITY of EDINBURGH
o A] -
Awy)- informatics
LNy

So how is the normal flow when a project
starts?

e Someone has an idea

* Whow — cool! We need a tool / an extension / a solution
... (time goes on, initial budget for planning is acquired, solution provider identified, etc.)
are taken down

* User stories written, duty book, fine-concept, etc.
* Communication, elaboration

e Change 1

e Change 2

* Legalissue 1

* Legal issue 2

* Budget overrun

* manager changes / has a bad day

:‘*0\“’.,’4", THE UNIVERSITY of EDINBURGH

L] L]
Aey)- informatics
DI

The ideal world?!?

‘Sprint/

‘ Development
User Story / Tasks

Use Case

‘Requirement

Vision / Draft
concept / Idea

S”QNWE%’,; THE UNIVERSITY of EDINBURGH

L] L]
Aey)- informatics
OINe

Our Reality (at least very often)

Sprint /
Development
Tasks

RIVE,
TN THE UNIVERSITY of EDINBURGH

A& informatics

Feedback / Idea

User Story / Use

Case

Everything influences everything (dynamic system...)
Chaos is somehow normal
* The goal is to control (well, better live with)
the chaos to a manageable extent

Feedback loops are important as this is the decisive
moment when we learn!
* Design errors during development
need fixing (requirements + use cases)
* Yet they can be beneficial -> lessons learned

Every innovation will have setbacks during field-use
and will require re-investigation, fixes, etc.
* The steam engine took a long time to be as good
as it is right now (and now we have to find new
ways again...)

Inception Phase

thl & :>

3

Business Analyst ,
Product Owner i

o’
)

Dev. Manager@

i

Architect

HE UNIVERSITY of EDINBURGH

“ Delivery Manage
Architect

b4
Product Owner

7

Team Engagement

- BREQ Decomposition [}
Sign ; m
off I Business Reauirement ‘2 Dev. Manager {:}
Business Reauirement 2 4
L @Ff
Business Reauirement a) < >
Business Owner “ QA Manager
o Business Requirement Package DevOps f"ﬁ
— (Wiki) and MoSCow P o
& “ Milestone
Performance Prioritization
Project Kick off Securlty P
Meeting e I I
o ah
oA Sponsors
™~ I:> Composition n Business Owner
. oo _ _
Rewew
Project Manager Stakeholders Register by ™ ™
and Communication Plan Project Charter
Business Owner Sponsors
12

nformatics

Note: Only projects that are governed by the PMO will have the Project Charter required. Find more information about this document in the relevant links section.

Elaboration Phase

B Business Reauirement

e

B Business Reauirement ~ Feature an.d .
B Business Reauirement :> - | > Use Cases + [Acceptance Criteria
w o Sign Off
L g Product \/

Business

N L -/ Owner M M ! !
U u Feature

Requirement AFC““ECt % Prioritization
(pa Elaboration {:}\g High -Level Low-level |]]] LBR: Versio:)
S Design Design ‘ ssighmen
-, - </ " & [+ L (4} [?
¥ Technical \

Business‘ q
Owner -_ = {:} A‘-}V/ATL Manager Approach

Business ik v
Analyst ™ Q
4

=

QA Manager

0

Team Engagement to determine
Business Release

Delivery Manager

@b THE UNIVERSITY of EDINBURGH

&y informatics -

Construction Phase

|

1

Delivery Manager

]
N\ .
Q Q

FixVersion
Assignment

An Epic must be release in one
Fix Version

=) /Product Oowne a

Backlog
Review
Assign to
g = a7
N~ Scrum Team
ﬂg “ () (Dev +QA) @
Architect J @

Meeting
QA
1 - C’“’
=
L]
o Backlog —

Assigned to Sprint
(Next 2 Sprint)

Planning
Iteration
Meeting

Estimation
Meeting

Committed
Delivery Date

~r g THE UNIVERSITY of EDINBURGH

- informatics

Review Al 0 ha QA Test

Sprint Test ﬂ
ﬁ x Deployment

§E
oF e
ian Off

PO
QA Team

]

With “Ready to
Merge” Status

14

Transition Phase

AT-1 Q‘/—

Release Envr. _ ‘

Branch eployment Automation Run - - 5 lp
> @2 RAE I

Canary Deployment Production
Release Affecting -~ Deployment
Bug Fix (S1 and S2) :@ ‘
e Dry Runs Test

Integration and
System Test

Postproduction
Test

mmmmmmmmm

)

Performance
Regression Test

- THE UNIVERSITY of EDINBURGH

Ae8)- informatics API & Bl Automation 15
: Test

)
)
)

1y
BRIVE

SAFe (when you do it really large...)

e SAFe 6.0 (scaledagileframework.com)

* Framework for Team of Teams (Tribe...)

HHHHHHHHHHHHHHHHHHHHHHHH

https://scaledagileframework.com/

#h

Enterprise

mm

Organizational Government

Agility

Operational Value Streams

Portfolio Flow

e
‘ . & I
Lea!‘ “i [] Strategic Portfolio
Portfolio Epic Enterprise Themes Vision
Management Owners Architect
Business 4 @ M
owners AAAA
Customer Centricity
. 9 f'
Agile (Y] £
Product Product System Ve
Delivery Mgmt Architect OO Lean UX
I'\éE Design Thinking
Team Flow
Agile Teams -
9
Team and [°)
Technical Product ‘-‘&
Agility Owner ™ d SAFe Sc:r:n
é Built-In
E) Quality
Scrum Master / Team Coach -
| |
]
Business & Technology SAFe Team Kanban
Lean-Agile DI | can-Agile Core

Leadership

Mindset

Values

Portfolio
Backlog
PB

Backlog

Backlogs

SAFe

Principles

O X»X» BUSINESS AGILITY >»x» %

PORTFOLIO
Big Data Value Stream Management
-
]
Ih' Solutions

Lean Budgets ‘ Coordination

Guardrails

Continuous Delivery Pipeline

Development Value Streams

KPIs

ESSENTIAL

Solution
L N
Continuous Continuous Continuous Solution
Exploration Integration Deployment Context
7 Release on Demand
& @ (] @ @)
System Demos Cloud
? 5 K :
E Story —_— E @
q X B Em e B Y/
_ DevOps
Iterations
P

Pl Objectives

Architectural Runway

(3 3 3

Implementation
Roadmap

A
I —)

Leffingwell, et al. © Scaled Agile, Inc.

9
AT

lﬂ SPC

Roadmap

Al

Shared
Services

09,
™1~]
CoP

“‘©

System
Team

-
Y

Measure
& Grow

Continuous
Learning
Culture

Talking about requirements

* For whom do you do them?
* Do you do them always? When do you do them?
* How / when on the timescale / how often to change

* First things first — people

g\\\“"”"; THE UNIVERSITY of EDINBURGH
o A] -
Awy)- informatics
LNy

Talking about requirements

* As the requirements engineer (very often a role explicitly
given away to an external entity or consulting group!) you
are the advocate of the “users” (all levels) towards the
implementation / development team

* Consider i.e. fear, job-frustration, anxiety, change-reluctance,
... (more on that later)

;0\“"”"; THE UNIVERSITY of EDINBURGH
5] .
¢y informatics
LNy

Some terminology

* A project can be anything where work is done — it doesn’t
matter which way it is organized or structured.

* In the end it is a “unit of work” which might contain sub-
units
* Every project has a customer which is the one / the instance

who has to pay the bills.

;0\“"”"; THE UNIVERSITY of EDINBURGH
5] .
¢y informatics
OiNeY

Stakeholders in a project

(the o Il)
* team-mates & team-manager e End-users
* Planning & organization team

* |t depends... » Manager

* (Scope / Importance)

Higher level management °IT
* Security & policy officer * Security (data, crypto, consumer
« Review management legal rights, ethics, etc.)

 Design (Ul, etc.)
* Higher management

g\\\“"”"; THE UNIVERSITY of EDINBURGH
= A] -
Awy)- informatics
LNy

So whom are you talking to about what?

Planning &

Higher Management

Management

Functional
Requirements

Non-Functional
Requirements

Security

:;‘ - v”"__\‘ THE UNIVERSITY of EDINBURGH

B .. L]

) informatic
PN

Requirements — who needs what?

* Users want to find “their” working environment and “their”
story

* Planning & organization teams want to see the broader
vision (as expressed by the management) and the needed
functionality

* The consider cross-issues as well (sometimes...)

g\\\“"”"; THE UNIVERSITY of EDINBURGH
= A] -
Awy)- informatics
LNy

Requirements — who needs what?

* IT needs precise and definitive specs for infrastructure and
runtime environments

* Security has to know what happens with data how (person-
specific data, customer data, who has access, how long,
storage, etc.)

* Management wants to see that you caught the idea and
carry it on

;0\“"”"; THE UNIVERSITY of EDINBURGH
5] .
¢y informatics
LNy

You need requirements

e They are your contract and life-line (at least part of).

what your software has to fulfill afterwards and
ultimately

g\\\“"”"; THE UNIVERSITY of EDINBURGH
= A] -
Awy)- informatics
OiNeY

How?

* Whiteboard, Pinboard with cards or mind mapping (kind of
electronic drawing surface)

* \ery nice are pads / touch interfaces (you can draw directly)
* Images are very efficient...

* UML tools are very good for structuring your ideas
* https://cAmodel.com/ (C4 model)

* Requirements are often written down in a duty-book / concept,

etc. as goals and explicitly requirements your software has to
fulfill

_;“"”";’ THE UNIVERSITY of EDINBURGH

L] L]
Aey)- informatics
DN

https://c4model.com/

What to keep in mind?

* Beware of the poor sods on the other side!

* no tech-talk or jargon (despite how cool it might be), buzzword-
orgies, keep it simple — plain national language

* Try to listen to those who barely speak — they might be the
ones with the knowledge and just shy / overheard culturally.

* Be extra vigilant when managers are present — nobody talks really
(cultural thing...).

* People are anxious if they are able to use the new feature /
software.

;0\“"”"; THE UNIVERSITY of EDINBURGH
5] .
¢y informatics
LNy

NFRs

* Nonfunctional Requirements - Scaled Agile Framework
* Hate them or love them, you need them

* They should be:

* Bounded (to a context)

* Independent (of each other)

* Negotiable (as a crucial aspect of economic performance)
» Testable (as objective measures)

* Check out the interesting annotation in the next slide

EEEEEEEEEEEEEEEEEEEEEEE

https://scaledagileframework.com/nonfunctional-requirements/#:~:text=NFRs%20are%20persistent%20constraints%20on,Markup%20Language)%20is%20a%20constraint.

NFR annotation

Step 1 Step 2
) Name: In the form Quality.SubQuality) Baseline: Current level
) Scale: What to measure (units)) Target: Success level to achieve
) Meter: What to measure (units)) Constraint: Failure to avoid

e

Name: Usability.Efficiency
Scale: Number of times the user decides to set the speed manually
Meter: Average observed results per trip from monitoring

Constraint Baseline Target
.15 times per mile .1 times per mile .01 times per mile

traveled traveled traveled

2,

N

6 Scaled Agile, Inc.

THE UNIVERSITY of EDINBURGH

(% : informatics https://scaledagileframework.com/nonfunctional-requirements/#:~:text=NFRs%20are%20persistent%20constraints%20on,Markup%20Language)%20is%20a%20constraint.

Most important

* Requirements analysis is a perfect moment to take stress
and anxiety away and show a way forward which allows
growth and especially participation

* Different communication levels have different agendas and different
requirements for the same thing (e.g. a new feature)

;0\ "’”; THE UNIVERSITY of EDINBURGH
= A] -
Awy)- informatics
LNy

A simple tip...

* When | jot down notes during a requirements session | have code
marks on the list indicating things for later:

\ Be careful — problems, issues

? Needs additional consideration, some more input needed
‘ Makes happy users — give them a dream
' | like that very much (personal interest, specific feature, etc.)
* General processes are involved and need changing

;Ww’a THE UNIVERSITY of EDINBURGH

L] L]
Aey)- informatics
OIN®

So, you got your requirements done?

* Congrats — your work just started...

* Now you need the use cases so you can show them and they
send you back with homework...
* That is called “getting feedback”

e Actually, it is nice — you show people you understood them and
give them a vision and they can appreciate and contribute!

g\\\“"”"; THE UNIVERSITY of EDINBURGH
= A] -
Awy)- informatics
LNy

What are use cases again?

* They describe things done (actions) by a participant (actor)
of the system

* For me they very often describe derived actions as well
* A booking form is used
* A specialized booking form with additional security credentials is used
A calculation is performed
* The calculation changes when XYZ as a pre-condition exists

* They show nicely if different users perform the same or
similar tasks (which allows for generalization / specialization)

;0\“"”"; THE UNIVERSITY of EDINBURGH
a] .
¢y informatics
LN

Why | love Use cases

* First of all - | like them and | use them quite often. Mostly
during start-up and then later on as a reference (during
implementation)

* They help me to group my logical building blocks in software
by combining similar functionality

* | can see patterns emerging (e.g. - 4 times a read / write
operation, once a read-only -> read-only must be a special
case and not the “norm”)

;0\“"”"; THE UNIVERSITY of EDINBURGH
5] .
¢y informatics
LNy

Use case benefits

* If nothing else, use case analysis perfectly clears your mind and
structures your thoughts (well, at least it helps).

* Use cases help to tackle a complex problem by systematic
decomposition into smaller more manageable pieces

IVERSITY of EDINBURGH

oRIVE,
K }\‘51 IHE UN| .
A&y informatic
TN

Where do you use them?

* Concept (high-level ones) and sorting out things (usually
mid-level)

* Clarification of ideas with customers (more detailed)
* Check that nothing is forgotten

* Mostly (at least for me) they are the pre-stage for more
complex structural diagrams

;0\“"”"; THE UNIVERSITY of EDINBURGH
5] .
¢y informatics
LNy

What comes next?

e Full UML diagrams which combine the use cases, the
requirements and present flows
* Activity
* Composition
* Component
* Collaboration
* Business process

:“\\’.,"1’,\ THE UNIVERSITY of EDINBURGH

a] .

&) informatics
LN

Different project types, different structures

* Depending on the project type requirement analysis and use
case usage differs

* Fixed price vs time and material
* Internal vs external projects

* Project vs product development is quite different

* Highly structured (waterfall) vs agile (extreme development)

;0\ "”"; THE UNIVERSITY of URGH
5] .
¢y informatics
OiNeY

A word on agile...

* Initial requirement analysis tends to be less then for other
project types

* Agile project by their very nature have a tight feedback loop
(sprints), so anticipate change

* As more functionality is available earlier for user feedback
new requirements are pushed onto the development team
earlier as well

;0 B THE UNIVERSITY of EDINBURGH
= A] -
Awy)- informatics
OiNeY

	Slide 1: Applied Use Cases and Requirements Engineering
	Slide 2: What you know / have heard already
	Slide 3: Use with caution
	Slide 4: What I want to show you
	Slide 5: First things first – a kind of intro…
	Slide 6: I love clear specifications
	Slide 7: Reality check
	Slide 8: So what are you really doing? Where do you see yourself now, in 5 years, …
	Slide 9: So how is the normal flow when a project starts?
	Slide 10: The ideal world?!?
	Slide 11: Our Reality (at least very often)
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: SAFe (when you do it really large…)
	Slide 17
	Slide 18: Talking about requirements
	Slide 19: Talking about requirements
	Slide 20: Some terminology
	Slide 21: Stakeholders in a project
	Slide 22: So whom are you talking to about what?
	Slide 23: Requirements – who needs what?
	Slide 24: Requirements – who needs what?
	Slide 25: You need requirements
	Slide 26: How?
	Slide 27: What to keep in mind?
	Slide 28: NFRs
	Slide 29: NFR annotation
	Slide 30: Most important
	Slide 31: A simple tip…
	Slide 32: So, you got your requirements done?
	Slide 33: What are use cases again?
	Slide 34: Why I love Use cases
	Slide 35: Use case benefits
	Slide 36: Where do you use them?
	Slide 37: What comes next?
	Slide 38: Different project types, different structures
	Slide 39: A word on agile…

