
Applied Use Cases and
Requirements Engineering

Michael Glienecke, PhD

Senior Principal Architect

Executive Director

What you know / have heard already

• Requirements
• Functional / Non-Functional

• Stakeholders

• Ways to get them

• Use Cases
• Actors, scenarios

• UML

• With Requirements

• Agile and Plan-Driven processes
• Pros / Cons, implications

Use with caution

• Everything in here is my personal view

• You have a wonderful brain yourself, so take what you want
and leave what you consider inappropriate

What I want to show you

• Where do you use what, why, how and when

• How to make the most out of use cases and requirements

• Migrate from coder to developer to software engineer

First things first – a kind of intro…

• Real-life is real-life and sometimes things do not work as
planned or anticipated. The same is true for requirements &
use-cases

• We should try to:
• use best engineering possible

• use best tools for the job

• be as professional as possible

• design future-oriented not backwards looking software

I love clear specifications

https://www.intechopen.com/books/flight-physics-models-techniques-and-technologies/helicopter-flight-physics

Reality check

• Designing software (actually anything where there is interaction
between something A and something B) is not only “design and
implementation”

• Designing & Developing SW is more people-skill-centric than
most people anticipate

So what are you really doing?
Where do you see yourself now, in 5 years, …

• Coder

• Software developer

• Software designer

• Usability / Experience designer

• Service designer

• Process designer

• Business Analyst

• …

So how is the normal flow when a project
starts?
• Someone has an idea

• Whow – cool! We need a tool / an extension / a solution
• … (time goes on, initial budget for planning is acquired, solution provider identified, etc.)
• Requirements are taken down

• Use cases derived / developed
• User stories written, duty book, fine-concept, etc.
• Communication, elaboration

• …
• Change 1
• Change 2
• Legal issue 1
• Legal issue 2
• Budget overrun
• manager changes / has a bad day

You are in trouble

You have your great day

The ideal world?!?

Vision / Draft
concept / Idea

Requirement

User Story /
Use Case

Sprint /
Development
Tasks

Our Reality (at least very often)

Feedback / Idea

Requirement

User Story / Use
Case

Sprint /
Development

Tasks

• Everything influences everything (dynamic system…)
• Chaos is somehow normal

• The goal is to control (well, better live with)
the chaos to a manageable extent

• Feedback loops are important as this is the decisive
moment when we learn!
• Design errors during development

need fixing (requirements + use cases)
• Yet they can be beneficial -> lessons learned

• Every innovation will have setbacks during field-use
and will require re-investigation, fixes, etc.
• The steam engine took a long time to be as good

as it is right now (and now we have to find new
ways again…)

Project Charter

12

Business Analyst

Project Manager

Product Owner

Architect

Initiative
(POW)

Team
Composition

Stakeholders Register
and Communication Plan

Project Kick off
Meeting

Business Requirement Package
(Wiki) and MoSCow

Business Owner

Milestones (
PINQ)

Dev. Manager

QA Manager

P
re

se
n

te
d

 t
o

Team Engagement

Business Owner Sponsors

BREQ Decomposition

&

Delivery Manager

Inception Phase

Yes

Sign
Off

Review
by

Business Owner

Sponsors

Architect

Product Owner

Dev. Manager Milestone
Prioritization

DevOps

Security
Performance

Note: Only projects that are governed by the PMO will have the Project Charter required. Find more information about this document in the relevant links section.

+

13

ATLs/ Tech. Lead

High -Level
Design

Low-level
Design

Feature

Epic

Team Engagement to determine
Business Release

Delivery ManagerPMO

Epic Epic

Architect

Business

Analyst

Business

Owner

UI/UX Research

Product

Owner

Business
Requirement
Elaboration

Use Cases

Elaboration Phase

Inform

Technical
Approach

Feature and
Acceptance Criteria

Sign Off

Feature
Prioritization
(BR. Version
Assignment)

QA Manager

Dev/ATL Manager

14

Product Owner

Architect

Epic

Stories

Planning
Iteration
Meeting

Subtask

Backlog
Review
Meeting Assign to

Construction Phase

Assigned to Sprint

(Next 2 Sprint)

Feature

TODO In
progress

Complete

Scrum Team

(Dev +QA)

Estimation
Meeting

Alpha

Deployment

PO Sign Off

Stories

With “Ready to

Merge” Status

Yes

An Epic must be release in one
Fix Version

Sprint Test
Plan

Review

Delivery Manager

FixVersion
Assignment

Backlog

Epic Epic

Committed
Delivery Date

15

Transition Phase

Release
Branch

Performance

Regression Test

Integration and

System Test

Dry Runs

Automation Run

Canary Deployment Production

Deployment

Release
Go/No-Go
Meeting

Postproduction

Test

Release Affecting

Bug Fix (S1 and S2)

Deployment

Dry Runs Test

AT-1
Envr.

API & BI Automation

Test

SAFe (when you do it really large…)

• SAFe 6.0 (scaledagileframework.com)

• Framework for Team of Teams (Tribe…)

https://scaledagileframework.com/

Talking about requirements

• For whom do you do them?

• Do you do them always? When do you do them?

• How / when on the timescale / how often to change

• First things first – people

Talking about requirements

• As the requirements engineer (very often a role explicitly
given away to an external entity or consulting group!) you
are the advocate of the “users” (all levels) towards the
implementation / development team

• Consider i.e. fear, job-frustration, anxiety, change-reluctance,
… (more on that later)

Some terminology

• A project can be anything where work is done – it doesn’t
matter which way it is organized or structured.

• In the end it is a “unit of work” which might contain sub-
units

• Every project has a customer which is the one / the instance
who has to pay the bills.

Stakeholders in a project

• Your side

• team-mates & team-manager

• It depends…
• (Scope / Importance)

Higher level management
• Security & policy officer
• Review management

• Their side (the “customer”)

• End-users

• Planning & organization team

• Manager

• IT

• Security (data, crypto, consumer
legal rights, ethics, etc.)

• Design (UI, etc.)

• Higher management

So whom are you talking to about what?

Planning &
Organization Team

End users

IT

Higher Management

Management

Security

Functional
Requirements

Non-Functional
Requirements

Design

Requirements – who needs what?

• Users want to find “their” working environment and “their”
story

• Planning & organization teams want to see the broader
vision (as expressed by the management) and the needed
functionality
• The consider cross-issues as well (sometimes…)

Live Examples

Requirements – who needs what?

• IT needs precise and definitive specs for infrastructure and
runtime environments

• Security has to know what happens with data how (person-
specific data, customer data, who has access, how long,
storage, etc.)

• Management wants to see that you caught the idea and
carry it on

Live Examples

You need requirements

• You need them – they are your friend!

• They are your contract and life-line (at least part of).

• They define what your software has to fulfill afterwards and
ultimately if you succeed or fail.

How?

• Whiteboard, Pinboard with cards or mind mapping (kind of
electronic drawing surface)

• Very nice are pads / touch interfaces (you can draw directly)
• Images are very efficient…

• UML tools are very good for structuring your ideas
• https://c4model.com/ (C4 model)

• Requirements are often written down in a duty-book / concept,
etc. as goals and explicitly requirements your software has to
fulfill

Live Examples

https://c4model.com/

What to keep in mind?

• Beware of the poor sods on the other side!
• no tech-talk or jargon (despite how cool it might be), buzzword-

orgies, keep it simple – plain national language

• Try to listen to those who barely speak – they might be the
ones with the knowledge and just shy / overheard culturally.
• Be extra vigilant when managers are present – nobody talks really

(cultural thing…).

• People are anxious if they are able to use the new feature /
software.

NFRs

• Nonfunctional Requirements - Scaled Agile Framework

• Hate them or love them, you need them

• They should be:
• Bounded (to a context)
• Independent (of each other)
• Negotiable (as a crucial aspect of economic performance)
• Testable (as objective measures)

• Check out the interesting annotation in the next slide

https://scaledagileframework.com/nonfunctional-requirements/#:~:text=NFRs%20are%20persistent%20constraints%20on,Markup%20Language)%20is%20a%20constraint.

NFR annotation

https://scaledagileframework.com/nonfunctional-requirements/#:~:text=NFRs%20are%20persistent%20constraints%20on,Markup%20Language)%20is%20a%20constraint.

Most important

• Requirements analysis is a perfect moment to take stress
and anxiety away and show a way forward which allows
growth and especially participation

-> people design software they are going to use afterwards

• Different communication levels have different agendas and different
requirements for the same thing (e.g. a new feature)
• Management = Cost & Time to market
• Mid-level = functional completeness, will it work with XYZ, can it be extended?
• Users = This is really complicated – how will we be able to use it?

A simple tip…

• When I jot down notes during a requirements session I have code
marks on the list indicating things for later:

Be careful – problems, issues

Needs additional consideration, some more input needed

Makes happy users – give them a dream

I like that very much (personal interest, specific feature, etc.)

General processes are involved and need changing

?

So, you got your requirements done?

• Congrats – your work just started…

• Now you need the use cases so you can show them and they
send you back with homework…
• That is called “getting feedback”

• Actually, it is nice – you show people you understood them and
give them a vision and they can appreciate and contribute!

What are use cases again?

• They describe things done (actions) by a participant (actor)
of the system

• For me they very often describe derived actions as well
• A booking form is used

• A specialized booking form with additional security credentials is used

• A calculation is performed
• The calculation changes when XYZ as a pre-condition exists

• They show nicely if different users perform the same or
similar tasks (which allows for generalization / specialization)

Live Examples

Why I love Use cases

• First of all - I like them and I use them quite often. Mostly
during start-up and then later on as a reference (during
implementation)

• They help me to group my logical building blocks in software
by combining similar functionality

• I can see patterns emerging (e.g. - 4 times a read / write
operation, once a read-only -> read-only must be a special
case and not the “norm”)

Use case benefits

• If nothing else, use case analysis perfectly clears your mind and
structures your thoughts (well, at least it helps).

• Use cases help to tackle a complex problem by systematic
decomposition into smaller more manageable pieces

Where do you use them?

• Concept (high-level ones) and sorting out things (usually
mid-level)

• Clarification of ideas with customers (more detailed)

• Check that nothing is forgotten

• Mostly (at least for me) they are the pre-stage for more
complex structural diagrams

What comes next?

• Full UML diagrams which combine the use cases, the
requirements and present flows
• Activity

• Composition

• Component

• Collaboration

• Business process

Live Examples

Different project types, different structures

• Depending on the project type requirement analysis and use
case usage differs

• Fixed price vs time and material

• Internal vs external projects

• Project vs product development is quite different

• Highly structured (waterfall) vs agile (extreme development)

A word on agile…
• Initial requirement analysis tends to be less then for other

project types

• Agile project by their very nature have a tight feedback loop
(sprints), so anticipate change

• As more functionality is available earlier for user feedback
new requirements are pushed onto the development team
earlier as well

• Despite all flow and dynamic change, a global vision (and
global requirement analysis) is still mandatory as otherwise
the final solution might deviate (which can be acceptable)
too much from the initial goal

	Slide 1: Applied Use Cases and Requirements Engineering
	Slide 2: What you know / have heard already
	Slide 3: Use with caution
	Slide 4: What I want to show you
	Slide 5: First things first – a kind of intro…
	Slide 6: I love clear specifications
	Slide 7: Reality check
	Slide 8: So what are you really doing? Where do you see yourself now, in 5 years, …
	Slide 9: So how is the normal flow when a project starts?
	Slide 10: The ideal world?!?
	Slide 11: Our Reality (at least very often)
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: SAFe (when you do it really large…)
	Slide 17
	Slide 18: Talking about requirements
	Slide 19: Talking about requirements
	Slide 20: Some terminology
	Slide 21: Stakeholders in a project
	Slide 22: So whom are you talking to about what?
	Slide 23: Requirements – who needs what?
	Slide 24: Requirements – who needs what?
	Slide 25: You need requirements
	Slide 26: How?
	Slide 27: What to keep in mind?
	Slide 28: NFRs
	Slide 29: NFR annotation
	Slide 30: Most important
	Slide 31: A simple tip…
	Slide 32: So, you got your requirements done?
	Slide 33: What are use cases again?
	Slide 34: Why I love Use cases
	Slide 35: Use case benefits
	Slide 36: Where do you use them?
	Slide 37: What comes next?
	Slide 38: Different project types, different structures
	Slide 39: A word on agile…

