
Inf2-SEPP:
Lecture 11: Design Patterns: MVC, Observer

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh



Previous lectures

I Design
I Class diagrams
I Sequence diagrams

Both important for this lecture

2 / 18



This lecture

Design patterns

I Meaning, background and use

I Elements of a pattern

I Cautions on pattern use

I Architectural pattern: The Model View Controller (MVC)
I Detailed design pattern (behavioural): Observer

I The problem
I Details
I Advantages
I Disadvantages

3 / 18



Design Patterns

“Reuse of good ideas”

A pattern is a named, well understood good solution to a common
problem.

I Experienced designers recognise variants on recurring
problems and understand how to solve them.

I They communicate their understanding by recording it in
design patterns

I Such patterns then help novices avoid having to find solutions
from first principles.

Patterns help novices to learn by example to behave more like
experts.

4 / 18



Patterns: background and use

Idea comes from architecture (Christopher Alexander): e.g.
Window Place: observe that people need comfortable places to
sit, and like being near windows, so make a comfortable seating
place at a window.

Similarly, software design patterns address many commonly arising
technical problems in software design, particularly OO design

Patterns also used in: reengineering; project management;
configuration management; etc.

Pattern catalogues: for easy reference, and to let designers talk
shorthand.

5 / 18



Elements of a pattern

A pattern catalogue entry normally includes roughly:

I Name (e.g. Publisher-Subscriber)

I Aliases (e.g. Observer, Dependants)

I Context (in what circumstances can the problem arise?)

I Problem (why won’t a naive approach work?)

I Solution (normally a mixture of text and models)

I Consequences (good and bad things about what happens if
you use the pattern.)

6 / 18



Cautions on pattern use

Patterns are very useful if you have the problem they’re trying to
solve.

But they add complexity, and often e.g. performance penalties too.
Exercise discretion.

You’ll find the criticism that the GoF patterns in particular are
“just” getting round the deficiencies of OOPLs. This is true, but
misses the point.

(GoF = “Gang of Four”, authors of the first major Design Patterns
book)

7 / 18



Model View Controller (MVC): the problem

Context: architectural design

Reminders:

I The more complex a system is, the less maintainable, harder
to understand, error prone, less secure.

I Complexity can increase at a high speed: the more
components, the even more relationships between them

I Related concept of coupling; The more relationships, the
higher the coupling

I Design guidelines/principles:
I Separation of concerns: components doing only one thing;

grouping components with related functionality
I Keeping coupling low

Especially a problem for large scale systems (over 100K LOC)

8 / 18



Model View Controller (MVC): the solution

Split the application into 3 components:

I Model: manages data and the domain logic of the application.
Communicates with the controller. Usually interacts with a
data source (database, input file, etc.). Can sometimes
update the view (not in version from this course).

I View: defines and manages how data is presented to the
users. There can be several views.

I Controller: receives input from the user, handles application
logic, acts as middleman between model and view.

9 / 18



Model View Controller (MVC): an example interaction

10 / 18



Model View Controller (MVC): advantages and use

I Facilitates the separation of concerns, as each component has
distinct responsibilities

I Decouples presentation (the view) from data and domain logic
(the model)

I Multiple developers can work in parallel on the different
components

I Easier to understand, maintain, less error prone

I Easier to test

I Supports multiple views, ideal for web applications

One of most popular architectures for web applications, used in
numerous web frameworks: Ruby on Rails, Angular, Django, Flask.

11 / 18



Observer pattern: the problem

Context: detailed design

Problems:

1. Maintaining state consistency between a set of cooperating
classes, i.e. dependant classes being informed about the state
changes of subject classes.

2. Easily adding and removing dependants without changing the
subjects (i.e. not knowing of who dependants are).

Example: Changing the way information on students (the subjects)
is presented in a bar chart vs pie chart (dependants).

Observer is often used in event driven software, and in MVC
pattern to represent the ’view’ part.

12 / 18



Observer pattern: the problem

Näıve solution for problem 1): associating each subject with each
of its dependants

BUT this leads to tight coupling, not respecting problem 2):

I The subject must know of its dependants and their number

I The subjects may need updating when dependants are
updated.

13 / 18



Observer pattern with one subject

14 / 18



Observer pattern with potentially more subjects

15 / 18



Observer pattern with potentially more subjects

16 / 18



Observer pattern: Advantages and disadvatages

Advantages:

I Abstract, minimal subject-observer class coupling

I Support for broadcasting, without the subject needing to
know and inform each observer

Disadvantages:

I May lead to cascades of updates which are difficult to debug

I Costly in terms of space if many subjects and few observers;
One solution: use of hash maps, costly in terms of time.

I Ending up with dangling references to deleted subjects/
observers; One solution: notifying when deleted

I Risk of having an inconsistent subject state before notification

17 / 18



Resources

Recommended: Read more on design patterns in general, e.g.

I Stevens: Ch18.2
I Sommerville: Look up design patterns in index
I http://en.wikipedia.org/wiki/Design_Patterns

Essential: Read on the MVC and Observer patterns:

I On the MVC architectural pattern: from YouTube
I If you can get a copy of Gamma, E., 1995. Design

patterns: elements of reusable object-oriented software.
Pearson Education India: p. 326-337 ”Observer”

I On the Observer pattern: from Source Making and
Wikipedia

18 / 18

http://en.wikipedia.org/wiki/Design_Patterns
https://www.youtube.com/watch?v=pCvZtjoRq1I
https://sourcemaking.com/design_patterns/observer
https://en.wikipedia.org/wiki/Observer_pattern

	Design patterns

