
Inf2-SEPP:
Lecture 12 Part 1: Design Patterns: Command,

Singleton

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh



Previous lecture

I Design patterns
I Introduction, cautions
I The MVC Pattern
I The Command Pattern (a behavioural pattern)

2 / 15



This lecture

Design patterns continued

I The Command Pattern (a behavioural pattern) and the
Singleton Pattern (a creational pattern)
I The problem
I Details
I Benefits
I Drawbacks

3 / 15



Command pattern: the problem

Context: detailed design

Problems:

1. Parametrising an object (an invoquer) with a command to
another (a receiver)

2. (Optional) Objects from different classes being able to do the
same command

E.g. Universal remote control being programmable to turn on and
off various items in your home like lights, stereo, AC etc. It should
be easy to change button and dial controls, and to set buttons and
dials to do the same thing.

4 / 15



Command pattern: the problem

Näıve solutions for problem 1):

I Adding to the invoquer’s implementation long lists of if-else
statements standing for all possible commands, what to do,
and for what receiver.
E.g. in a Button class: ”if required to turn on AC, tell AC
object . . . , if required to turn off lights tell Light object”.

I Subclassing the invoquer for its use for different commands
(to different receivers), interchangeable at runtime.
E.g. ButtonACOn, ButtonLightsOff inheriting from Button

Difficult to understand (1), maintain (1, 2 if many subclasses),
error prone (1, 2 especially if updating superclass); Invoquers are
tightly coupled with receivers; problem 2 would only be solvable
with code duplication or adding class dependencies.

5 / 15



Command pattern: general solution

6 / 15



Command pattern: solution to the example

7 / 15



Command pattern: advantages and disadvantages

Advantages:

I Reduced coupling between invoquer and receiver

I Commands are objects so can be manipulated and extended
like any object

I Composite commands can be set up

I Commands can be queued

I Undo/redo and logging can be set up

I Changing command in invoquer is easy

I Several invoquers can use the same commands without code
duplication

I Extensible as adding new commands is easy

Disadvantage: code may become more complex due to extra layer
between invoquer and receiver

8 / 15



Singleton Pattern: The problem

Context: detailed design

There are situations in which we want for a class to:

1. Have a single instance

2. Offer global access to it

3. Protect it from being overwritten

E.g. A single log of all all actions taken by all the entities in the
system.

9 / 15



Singleton Pattern: The problem

Näıve partial solution to problem 2 in other programming
languages than Java: global variables can make objects accessible

BUT:

I You could still instantiate several such objects (breaks
problem 1)

I They can be overwritten, so very unsafe (breaks problem 3)

The Singleton Pattern is used to address this problem. It is often
used for logging, driver objects, caching, and in many other
patterns.

10 / 15



Singleton Pattern: Details

There are many versions of Singleton, but they all share the
following main ideas:

I Make the class itself responsible to keep track of its sole
instance, by hiding its constructor (using private in Java)

I The class offers a way to access the instance, through a static
operation (getInstance()) which returns the sole instance of
the class

11 / 15



Singleton Pattern: Eager initialisation

The instance is created at first loading of the class (even if not
needed).

12 / 15



Singleton Pattern: Lazy initialisation (for single threaded
systems)

The instance is created the first time the global creation operation
is called.

13 / 15



Singleton Pattern: Advantages and disadvatages
Advantages:

I Offers controlled global access to a sole instance of a class

I The object is initialised only once

I Preferred over global variables: avoids polluting the name
space, permits lazy allocation and initialisation

I Can be easily changed to allow more instances of the class, by
editing the getInstance() operation

Disadvantages (leading some to frame it as an anti-pattern):

I It is frequently misused, adding unnecessary restrictions

I Introduces global state, potentially unsafe

I Leads to tight coupling between classes in your application

I Multiple threads may create multiple objects

I Its private constructor and static operation make it difficult to
produce mock objects needed for unit testing

14 / 15



Resources

Essential: Read about the Command and Singleton patterns:

I If you can get a copy of Gamma, E., 1995. Design
patterns: elements of reusable object-oriented software.
Pearson Education India: p. 263-268 ”Command”, p.
144-146 ”Singleton”

I On the Command pattern: from Refactoring Guru and
YouTube

I On the Singleton pattern: from Refactoring Guru and
Wikipedia

15 / 15

https://refactoring.guru/design-patterns/command
https://www.youtube.com/watch?v=9qA5kw8dcSU
https://refactoring.guru/design-patterns/singleton
https://en.wikipedia.org/wiki/Singleton_pattern

