
Inf2: SEPP
Lecture 18: Verification, validation and testing:

Overview

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh



Last lectures

I Requirements engineering

I Design

I Construction

I Refactoring

2 / 17



This lecture

Verification, validation and testing (”VV&T”)

I Motivation

I Definitions

I Essence of testing

I Terminology of what can go wrong

I Approaches to testing, kinds of tests
I How to test:

I Test-first development
I Test-driven development
I Behaviour-driven development

I Evolving tests

I Limitations of testing

3 / 17



Verification, validation and testing: motivation

From Lecture 14 . . .

High quality code does what it is supposed to do.

What it is supposed to do means:

I Meets stated requirements

I Meets wider expectations
(of whoever it was who asked for its development, and ideally
of stakeholders)

Problems:

I How can we know this is the case?

I When it is not, how can we isolate the cause?

4 / 17



Verification, validation and testing: definitions

“VV&T” generally refers to all techniques for improving product
quality, e.g., by eliminating bugs (including design bugs).

Verification: are we building the software right?

I Does software meet requirements?

Validation: are we building the right software?

I More general. Does software meet expectations?

Testing is a useful (but not the only) technique for both.

Other techniques useful for verification:
reviews/inspections/walkthroughs, static analysis

Other techniques useful for validation: prototyping, early releases

5 / 17



Essence of testing

I Generating stimulus for component

I Collecting outputs from component

I Checking if actual outputs are as expected

Often hard to fully test a component in isolation

I Component test environment constructed using mock objects

6 / 17



Terminology of what can go wrong

1. Mistake: Human behaviour that produces fault(s)

2. Fault: An incorrect step, process, or data definition in a
computer program. A.k.a defect or, informally, a bug

3. Error: A discrepancy between some computed value and the
correct value; Captured by tests.

4. Failure: The termination of an intended behavior due to a
fault manifestation.

Faults do not necessarily lead to errors

Errors do not necessarily lead to failures

7 / 17



Some approaches to testing

I Black box
I Focusing on the requirements while treating the system as a

black box (i.e. not looking into its code)
I Advantages: helps conduct verification; when refactoring, tests

do not need to be changed
I Disadvantages: may not thoroughly exercise the different ways

to execute the code

I White box
I Considers software code; testing that the system does what the

developer intended
I Advantages: helps developers check their work, more through
I Disadvantages: will miss misinterpreted requirements,

refactoring will require updating the tests.

I Regression testing: repeat some/all tests after modifications;
can help identify bugs and their location quicker.

8 / 17



Kinds of tests

I Module (or unit) tests: for each class in OO software, with
subset of tests for each of its methods; Isolate causes of errors.

I Integration tests: test that components interact properly

I System tests: at the level of the whole system, check if
requirements met

I Acceptance tests: check that system meets user/customer
needs (validation); done in real environment with real data

I Stress tests: push system to its limits to check that
performance degrades gracefully

I Performance tests: checking other performance requirements

I Regression tests (see regression testing above)

and many more. i.e., large area: whole third-year course on
testing. Basics only here. For more see SWEBOK.

9 / 17



How to test

Desirable that tests are:

I repeatable

I documented (both the tests and the results)

I precise

I done on configuration controlled software

Ideally, tests should be written at the same time as the
requirements- Now standard practice

I Tests and requirement features can be cross-referenced

I Use cases can suggest tests

Helps to ensure testability of requirements.

10 / 17



Test-first development (TFD)
Basic idea is

I write tests as informed by and capturing requirements, and
before writing the code they apply to (but still having
requirements!)

I write code to pass the tests
I iteratively run tests as code is written

The motivating observation: tests implicity define

I interface, and
I specification of behaviour

for the functionality being developed.

As a consequence:

I bugs found at earliest possible point
I bug location is relatively easy

11 / 17



Further advantages of TFD

TFD

1. clarifies requirements: trying to write a test often reveals
that you don’t completely understand exactly what the code
should do.
I Discover issues more quickly than if coding first
I Makes coding easier

2. avoids poor ambiguity resolution: if coding first,
ambiguities might be resolved based on what’s easiest to
code. This can lead to user-hostile software.

3. ensures adequate time for test writing: If coding first,
testing time might be squeezed or eliminated, which is very
risky.

12 / 17



Test-driven development (TDD)

A subtly different term, covers the way that in Extreme
Programming detailed tests replace requirements.

I Disadvantage: communication with stakeholders affected

13 / 17



Behaviour-driven development (BDD)

More recent term

I Writing use cases in a more stylised language which can be
parsed by a machine and at least partially turned into tests

I Advantages: more interpretable by stakeholders, produce tests

I Disadvantages: still not ideal for stakeholder communication;
go deeper into design and implementation and may lose sight
of higher level needs.

14 / 17



Evolving tests when new bug is identified

Assume an implementation passes all current tests.

What if a new bug is identified by users or by code review?

A good discipline is:

1. Fix or create a test to catch the bug.

2. Check that the test fails.

3. Fix the bug

4. Run the test that should catch this bug: check it passes

5. Rerun all the tests, in case your fix broke something else.

15 / 17



Limitations of testing

I Writing tests is time-consuming

I Coverage almost always limited: may happen not to
exercise a bug.

I Difficult/impossible to emulate live environment
perfectly
I e.g. race conditions that appear under real load conditions can

be hard to find by testing.

I Can only test executable things, mainly code, or certain
kinds of model – not high level design or requirements.

16 / 17



Reading

Essential: SWEBOK v4 Ch 5, on Software Testing

Essential: Sommerville SE Ch 8

Suggested: Stevens Ch 19.

17 / 17


