Inf2C: Software Engineering
Lecture 19: Verification, validation and testing:
Test automation, test coverage, bug reporting,
alternatives to testing

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh

Last lecture

Verification, validation and testing ("VV&T")

>

vVvyVvyVvyy

Motivation

Definitions

Essence of testing

Terminology of what can go wrong

Kinds of tests
How to test:

P Test-first development
» Test-driven development
» Behaviour-driven development

Evolving tests

Limitations of testing

2/29

This lecture

» Test automation with JUnit 5

» Main components of a JUnit 5 test class
» Assertion statements in JUnit 5

» Java inline assertions and their alternatives
> Test coverage and tools for it
» The Intell) IDEA coverage tool
» Bug reporting and tools for it
» Bug reporting with Trac and JIRA
P Alternatives to testing:

» Reviews/walkthroughs/inspections
» Static Analysis and tools for it

3/29

Test automation and JUnit

Automation of tests is essential, particularly when tests must be
re-run frequently.

JUnit is a framework for automated testing of Java programs.
You will use JUnit 5 in Coursework 3.

Similar frameworks now available for most languages

4/29

Main components of a JUnit 5 test class

A JUnit test is a method annotated with @Test in a test class.

Contents: code to execute the code under test, assert method(s),
usually an informative message if the test fails.

The test method can also have additional annotations:
> @DisplayName ("<Name>") for a more readable description of
the test name (spaces allowed) for when it is run.
> @Disabled("reason") to make the test inactive for a reason.
> QTag("<TagName>") to tag the test; JUnit 5 allows running

tests with a certain tag.

@RepeatedTest (<Number>) can be used instead of @Test to
repeat a test a number of times.

5/29

Main components of a JUnit 5 test class

There can also be other methods in a test class, annotated with:
> @BeforeEach: executed before each test, to prepare the test
environment

> QAfterEach: executed after each test to clean up the
environment

> @BeforeAll: executed before all tests in the test class to e.g.
connect to a database

> @AfterAll: executed after all tests to e.g. disconnect from a
database

6/29

Assertions

JUnit provides a library of assert methods to use in test code for
checking output of the program being tested.

Typical use:
assertEquals(expectedResult, obj.yourMethod());

7/29

Assertions

Some alternatives to assertEquals:

assertTrue(boolean condition)

Asserts that the supplied condition is true.

assertFalse(boolean condition)

Asserts that the supplied condition is not true.

assertNull(Object actual)

Asserts that actual is null.

assertNotNull(Object actual)

Asserts that actual is not null.

assertNotEquals(Object unexpected, Object
actual)

Asserts that unexpected and actual are not
equal.

assertSame(Object expected, Object actual)

Asserts that expected and actual refer to the
same object.

assertNotSame(Object unexpected, Object

Asserts that unexpected and actual do not refer

actual) to the same object.
assertArrayEquals(type[] expected, typel[] Asserts that expected and actual arrays of type
actual) type are equal.

Each of these can also get as an extra parameter a custom error

message (String) to be displayed

when the assertion fails.

8/29

Inline assertions

Checks can also be spread throughout the program code itself.

Goals: record assumptions throughout the code; do 'sanity checks’
during execution; turn faults into failures (AssertionError exception
errors raised on failure)

Examples:

> public static double sqrt (double x){
assert x>=0;
VANV
}

» int numWheels = 2 * numBikes;
/* ... x/
numWheels+ = 2;
/* ... x/

assert numWheels % 2 == 0;
Such assertion checking can be switched on/off.

9/29

Alternatives to inline assertions

Don't do this: overly defensive programming

public static double sqrt (double x){

if (x<0){
return NAN;

}

/x ... x/

Usually a bad idea, as it carries faults across. Better to find and
avoid faults, than to hide them.

10/29

Alternatives to inline assertions

Why not always handle errors properly, by using defensive
programming with error handling?

public static double sqrt (double x)
throws NegativeArgumentException{
if (x < O){
throw NegativeArgumentException{"Cannot take the
square root of a negative number"};

}
/*x .. %/

Pros: program will fail gracefully (as opposed to inline assertions).

Cons: checking inputs everywhere this way leads to duplicated code
between classes. Often better to only do this at the level of the Ul.
In this case, inline assertions still useful to catch other faults.

11/29

Test coverage

Test coverage is a measure of the degree to which the source code
of a program is executed by its tests.

Checking coverage and ensuring that tests achieve a high enough
level of coverage is often done during white-box testing.

Some types of test coverage:
» Statement coverage: what percentage of the lines of the code
were executed by at least one test?

» Branch coverage: what percentage of the branches of the
code were executed by at least one test?

» Basic condition coverage, modified condition/decision
coverage, path coverage, ...

We will only look at statement and branch coverage in this course.

12/29

Statement and branch coverage

Example:

void decideGreater (int a, int b){
if (a > b)
System.out.println("a is greater than b");

One test where a = 5 and b = 4 (or any number of tests where
value of a > value of b):

» We achieve 100% statement coverage because the test would
exercise all lines of code.
» But do we have 100% branch coverage?

» No, because we never execute the branch of the code in which
a > bis false.

13/29

Statement and branch coverage

We can add tests where the value of a <= value of b.

We then find that these tests do not print the expected "b is
greater or equal to a” (i.e. they fail), and we can fix the code:

void decideGreater (int a, int b){
if (a > b)
System.out.println("a is greater than b");
else
System.out.println("b is greater or equal to a");

Coverage has helped unveil an unconsidered case in the code.

Things more complicated when we have combinations of (complex)
nested conditions.

14 /29

Statement and branch coverage

100% branch coverage guarantees 100% statement coverage.
But 100% statement doesn’t guarantee 100% branch coverage!

They help realise whether we have missed any code or its branches
in out tests, and may help reveal bugs, but:

» Achieving high (even 100%) coverage does not mean code is
bug-free! E.g. maybe not all classes of inputs considered

» It may be easy to achieve high coverage without proper testing

> |t may be impossible to achieve 100% coverage, e.g. dead
code, branches that can never be reached

» Other types of coverage, e.g. path, complicate things a lot!

In general, such testing should be combined with black-box testing.

15/29

Test coverage tools in general and in IntelliJ IDEA

There are numerous:

» Open-source code coverage tools for Java with JUnit:
CodeCover, EMMA, Gretel, JaCoCo, Quilt.

» Commercial test coverage tools: Atlassian Clover, Testwell.

IntelliJ IDEA has its own test coverage tool, as well as the
possibility to integrate with JaCoCo and EMMA.

16 /29

Test coverage in IntelliJ IDEA

Mainjav g va GettingStartedT

2] Run/Debug Co

+ -BRA S
> Application
v @ Gradle

tingstarted [test] Allow paralel run Store as project file

Configuration de Coverage Gradle Debug

Junit Choos erage runner. telli) IDEA
sampling ot IDEA
> F Templates oo

s and classes to include in cover,
¥ Gettingstarted

VI Gettingstart

VIMain

+

Packages and classes to exclude from coverage data

+

V) Enable coverage in test folders

Pracess finished with exit code 8

abeian) @

Test coverage in IntelliJ IDEA

Mainjava tedjava GettingStartedTestjava

Gettingstanted

add(int a b) {

Application

ckPane (1)

Scene
stage.
stage . show()

main(string

Cover GettingStartedTest
v vie i passed: 2
'/ Test Restlts
GettingstartedTest Intellil
Testing add negative sanpling
include patt
exclude patt

Class transf

Testing add positiv

Process

1 args) {

asks
3 build
build setup

66% classes, 529 I

METAIN
netscape

IDEA coverage runne

ns
mation tine

26360365 Tor 784 classes or 3.3622908163265307E-4s per class

code ©

Method, %

abeianod @

Bug tracking

How does one keep track of bugs, the status of addressing them
and splitting this work within a team?

Many projects use a bug tracking system for both bug reports and
new feature requests.

Open source tools include: Bugzilla, Gnats, Trac , RT (used by our
support), MantisBT, Redmine and others.

Commercial tools include: JIRA, Axosoft, HP ALM/ Quality
Center, BugHost, IBM Rational ClearQuest

These provide extensive support for receiving, tracking, notifying,
monitoring, etc.

We will look at Trac and JIRA (very popular, free for teams
smaller than 10).

19/29

Bug tracking: Trac

Ticket Summary Version _ Milestone _ Type Owner Status __ Created
#3202 0OS on rejoin with new pathfinder Core engine Alpha 19 defect new Jun 13,
2015
#3471 Units not detecting invalid path. Core engine Alpha 19 defect new Sep 30,
2015
#3505 Pathfinder - Units in formation stuck frequently Core engine Alpha 19 defect new octs,
2015
#3551 [PATCH] Prohibit developer overlay cheats in rated games urs Alpha 19 defect new Oct 26,
Simulation 2015
#3549 Secure authentication - prevent joins as a different player Core engine Alpha 20 defect new Oct 24,
2015
#3255 [PATCH] Prevent replay overwrites by using date and sequential ID Core engine Alpha 19 defect elexis new May 20,
2015
#3271 0OS on rejoin - different mirage order Core engine Alpha 19 defect new May 27,
2015
#3526 Build a tower in enemy territory ura Alpha 19 defect new Oct 14,
Simulation 2015
#3545 [PATCH] Crash the game using cheats urs Alpha 19 defect stanislas69 assigned Oct 23,
Simulation 2015
#3241 [PATCH] Kick / ban players from a match Alpha 19 enhancement elexis new May 10,
Simulation 2015
#1791 Units command queue is reset when they enter new formation Alpha 20 defect new Dec 19,
Simulation 2012
#2001 Melee units with big maximum range can attack through walls urs Alpha 20 defect new Jun 24,
Simulation 2013
#2303 Update tutorials and increase their visibility ura Alpha 20 defect new Decs,
Simulation 2013
#2427 [PATCH] AtlasUI does not open on on commandiine Mavericks 10.9 Atlas editor Alpha 20 defect trompetin17 new Feb 8,
2014

20/29

Bug tracking: Trac

Opened 5 weeks ago
#3471 new defect Last modified 2 days ago
Units not detecting invalid path.

Reported by: stanislased

Priority: Release Blocker Milestone: Alpha 19

Compenent: Core engine Keywords: pathfinding

Cc: Itms

Description (last modified by elexis) A

We played a match today with elexis and ffm, and we noticed that units would often try to go from a point ‘a’
to a point 'b' without realising they wouldn't be able to reach it. So they just walk into the void.

The only we could workaround it, is by cancelling orders, and removing formations (setting it to none)

FFM stated formatien should be disabled whereas I think it should be set to none by default.

» Attachments (5)

21/29

Bug tracking: Jira

SraDem Pojct
L s

© koo
ers

ycpen e
epored sy me
Spenisaies

seno recnty
b recenty

Jodated recently

sl fters

© Jira Software.

Projecs / JnsDemo-Project

Issues

Search ssues

Type

Key

S S -

Asignee v Reporter v Stwus v Type v

Summary
Secure authentication: prevent joins o5 different layer

"

it developer overlay cheats i rated qames

Patinder- units in formatian stuck frequently
Urits ot detecting invald gt

005 un ejoin vith new elhfnde

Players through each other cut of the game

Urits command cueue s reset when they ener s formation
Kiekihad playrs rom the game

Clash the game wsing chests

Buid a toer inenery teritory

o

on rejoin-ciffrent mivage order

Pravent raplay overwrites by using cace and sequentil ID

Status Category

Reset

ssignee

DY —

X —

@ croivasonnin

@ crovaonnin

@ i s s
Unssigned

LT —
fr—

@ chineriomnin

@ e o s
j—

Unassigned

Reporter

Cristing Adians Alexandra

Ciisting Ackians Alexandra

Criting acriana Alecandra

[r—

Ciisting Ackians Alexandra

Cristing Adtians Mexandra

Cristing Alsandrs

Ctnaandn:

[RT—

Critina Aloxendrs

Cristing Aciana Alsxandra

it Acriana Alecandra

N

Q search

Eportlssues v

Status

*0 0@

Go to advanced search
Suitch to detilvew 0

Creted
Mar 9, 2021
Mar0, 2021
Mars, 2021
Mar9, 2001
Mar 9,201
Mars, 2021
Mar9, 2001
Mar9, 201
Mar 9,201
Mars, 201
Mar9, 2001

Niar s 2071

22/29

Bug tracking: Jira

9 JiraSoftware

Your work

siraDemo-Project <
Qlssic software project

Board v

Reports

Issues
Components
Code
Releases
Project pages
Additem

Project settings

Projects v Filters Dashboards v People ™ Apps

Projects / @ JraDemo-Project / B0
0O0S on rejoin with new pathfinder
& Arach

D cremesubtask (P linkissue | v oee

Description - Unzaved changes

1 playedt a game today and noticed that units would often try o go from a point 2" o point b’ without reslising they
wouldn't be able to reach it So they just walk nto the void

The only way we can wark around itis to cancel orders and remove formations.

Enviranment

This did not work on Windows 10 5.

Attachments (1)

gameng
ar2gen, 07129

Activity

BRSO Corme

9 history

@ ocnn

Pro tip: ress M o comment

Work log

o b < -
To0o
. @ Cistins Acians Alesandes
aporr @ Cistins Acians Alesandes
s None
Ot esimate sa
Time wcking Notime ogged 2o remaning
Duedne 2021031
Prioy + High
© Show 4 more feds
e Link ComporentsFieversinsand Al vesions
Created s hours ago £} Configure

Updted 6 hours ago

23/29

Alternatives to testing: 1.
Reviews/walkthroughs/inspections
One complementary approach is to get a group of people to look
for problems.

This can:

» find bugs that are hard to find by testing,
> discover when requirements have been misunderstood,

P> spot unmaintainable code,
> work on non-executable things:
P> e.g. requirements specification, UML model, test plan.

Of course the author(s) of each artefact should be looking for such
problems — but it can help to have outside views too.

For our purposes reviews/walkthroughs/inspections are all the
same; “Review"” for short.

24/29

Alternatives to testing: 2. Static Analysis

Static analysis involves automatically (more or less) inspecting
code to determine properties of it without running it. This is a
very active area for research.

E.g. Type-checking during compilation is a basic kind of static
analysis.

Tools vary in what problems they address, e.g.

> runtime exception issues (e.g. null pointer exceptions, array
index out of bounds)
» correctness of pre/post-condition specification of methods

» concurrency bugs e.g. race conditions

25 /29

Alternatives to testing: 2. Static Analysis- Trade-offs

When more complicated properties checked, tools generally

» can analyse only smaller programs,

> are less automated (e.g. annotations required)

As tools more automated and designed to work on larger programs,
they often cannot

P> guarantee every problem flagged is a real bug,

> find every bug.

Can think of such tools more as bug-hunting tools rather than
tools ensuring correctness.

26/29

Static analysis tools for Java

SpotBugs (FindBugs) is relatively widely used: looks for bug
patterns, code idioms that are often incorrect

ThreadSafe from the Informatics spinout Contemplate focusses
on finding concurrency bugs
http://www.contemplateltd.com/threadsafe

Infer from Facebook applies lightweight static analysis techniques
that scale to 10°+ LOC. Finds e.g. concurrency and null pointer
exception issues.

Give SpotBugs or Infer a try!

27/29

http://www.contemplateltd.com/threadsafe

Reading

Essential: Prepare to be able to write tests in JUnit 5:

» http://www.junit.org

» JUnit Tutorial http:
//www.vogella.com/articles/JUnit/article.html

» JUnit 5 Tutorial: Writing Assertions With JUnit 5
Assertion APl https:
//www.petrikainulainen.net/programming/testing/
junit-5-tutorial-writing-assertions-with-junit-5-ap

» Writing tests in JUnit 5: https://blog. jetbrains.
com/idea/2020/09/writing-tests-with-junit-5/

» Testing in IntelliJ IDEA and sublinks: https://www.
jetbrains.com/help/idea/tests-in-ide.html

28/29

http://www.junit.org
http://www.vogella.com/articles/JUnit/article.html
http://www.vogella.com/articles/JUnit/article.html
https://www.petrikainulainen.net/programming/testing/junit-5-tutorial-writing-assertions-with-junit-5-api/
https://www.petrikainulainen.net/programming/testing/junit-5-tutorial-writing-assertions-with-junit-5-api/
https://www.petrikainulainen.net/programming/testing/junit-5-tutorial-writing-assertions-with-junit-5-api/
https://blog.jetbrains.com/idea/2020/09/writing-tests-with-junit-5/
https://blog.jetbrains.com/idea/2020/09/writing-tests-with-junit-5/
https://www.jetbrains.com/help/idea/tests-in-ide.html
https://www.jetbrains.com/help/idea/tests-in-ide.html

Reading

Essential On inline assertions in Java (focus on the Preconditions,
Postconditions, and Class Invariants):
https://docs.oracle.com/javase/7/docs/technotes/
guides/language/assert.html

Essential: On statement and branch coverage:
https://www.guru99.com/code-coverage.html

Recommended: On unit testing and coverage in IntelliJ IDEA:
https://www.youtube.com/watch?v=QDFI191j40M

Recommended: JIRA bug tracking: https:
//www.atlassian.com/software/jira/bug-tracking

Recommended: SpotBugs: https://spotbugs.github.io/
Recommended: Infer: https://fbinfer.com/

29/29

https://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html
https://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html
https://www.guru99.com/code-coverage.html
https://www.youtube.com/watch?v=QDFI19lj4OM
https://www.atlassian.com/software/jira/bug-tracking
https://www.atlassian.com/software/jira/bug-tracking
https://spotbugs.github.io/
https://fbinfer.com/

