
Inf2-SEPP 2024-25

Tutorial 4 (Week 6)

Design Patterns

Study this tutorial sheet and make notes of your answers BEFORE the tutorial.

1 Introduction

The purpose of this tutorial is to help improve your understanding of the concept of design
patterns. You will study an example of the realisation of the Observer pattern in Java. Then,
you will get the chance to identify two design patterns that are suitable for given contexts.
Throughout, we will make use of UML diagrams to talk about the patterns.

Study of design patterns ought to help improve your understanding of good design prin-
ciples such as encapsulation, high cohesion and low coupling.

2 The Observer pattern

Revise the Observer Pattern from Lecture 11. Then take a look at how this pattern is central
to the design of the Java Swing GUI library and how it handles input events. Go visit

https://docs.oracle.com/javase/tutorial/uiswing/components/button.html

and read the first part titled How to Use the Common Button API demonstrating the use of
the JButton class with a class ButtonDemo. Then, see Figure 1 on page 4 for a listing of the
code of the ActionListener interface and the important parts of the ButtonDemo class. Aim to
understand how the JButton class and the ButtonDemo class, together with the ActionListener
interface, realise the Observer pattern.

To demonstrate your understanding of the code, create a UML class diagram showing
the structure related to the Observer pattern, and create a UML sequence diagram showing
what happens when one presses one of the buttons.

Keep the class diagram simple. Don’t model the Java library class and interface gener-
alisation hierarchies – just show the two classes JButton and ButtonDemo and the interface
ActionListener.

Some questions to think about with the class diagram:

1

https://opencourse.inf.ed.ac.uk/sites/default/files/https/opencourse.inf.ed.ac.uk/inf2-sepp/2025/lecture11mvcobserverpatterns_0.pdf
https://docs.oracle.com/javase/tutorial/uiswing/components/button.html

1. You don’t want to dig into the implementation of JButton or one of its ancestor classes.
Nevertheless, what association must you infer exists for the Observer pattern to be
implemented and button events to be handled sensibly?

2. What approach is taken in the ButtonDemo example to the question of how an Observer
object finds out about the nature of the events occurring at the Subject object?

3. Are there any associations in your class diagram that are contingent, that is, there in
this particular example, but not required by the pattern?

4. Are there any other ways in which the implementation is structurally different from
the abstract presentations of the pattern?

For the following two tasks, make sure you revised both Lecture 11 and Lecture 12 Part
1 and their associated reading.

3 Pattern identification 1

As part of a larger system, objects of classes A and B need to be able to perform a wide
range of mathematical calculations (addition, substraction, multiplication, division, sine,
cosine, logarithm, power, exponent, etc.). They also need to be able to undo any number of
previously performed calculations.

A colleague of yours started this design by placing operations corresponding to the dif-
ferent mathematical calculations, and their undo operations, within each of the classes A

and B. Another option they were considering was having a separate Calculator class which
contains all of these operations and can be used by objects of the A and B classes.

For this exercise, you are not allowed to use the Java java.lang.Math library.
Address the following questions and tasks:

1. What is your opinion about the solutions proposed by your colleague? What makes
each of them problematic? Think both about the current system requirements, as well
as making the system easily extensible (e.g. by supporting more and different mathe-
matical calculations by each of the classes A and B), understandable and maintainable
on the long term.

2. What design pattern might be appropriate to use in this context? What are its ad-
vantages over your colleague’s proposed solutions?

3. Create a UML class diagram to show your use of the pattern. You may focus only on
the addition, substraction and sine operations.

4. Write your implementation of the class diagram from the previous question using Java.

4 Pattern identification 2

You are part of the team designing a system for a bank. You are asked by your customers to
include in the system the functionality of automatically logging withdrawals, deposits and

2

https://opencourse.inf.ed.ac.uk/sites/default/files/https/opencourse.inf.ed.ac.uk/inf2-sepp/2025/lecture11mvcobserverpatterns_0.pdf
https://opencourse.inf.ed.ac.uk/sites/default/files/https/opencourse.inf.ed.ac.uk/inf2-sepp/2025/lecture12part1commandsingletonpatterns.pdf
https://opencourse.inf.ed.ac.uk/sites/default/files/https/opencourse.inf.ed.ac.uk/inf2-sepp/2025/lecture12part1commandsingletonpatterns.pdf

transfers as soon as they occur, such that the bank could later request reports using the log.
It is essential that each transaction is recorded with a timestamp. Withdrawals and deposits
must be recorded with an account and an amount, while transfers must be recorded using
the account-from, account-to, and amount. The bank is considering adding records of other
operations to the log in the future, as it expands its business.

For this exercise, you should be thinking of designing your own logging functionality,
without using the Java class Logger from java.util.logging. Although in real life logs
would be saved to secure storage (e.g. a database), for this exercise you are only required to
think of the object-oriented design (assume there is no database).

Address the following questions and tasks:

1. Without the use of design patterns, how would you ensure that all the classes involved
in withdrawals, deposits and transfers, and other future operations in the bank system,
can log such data? Why is this problematic?

2. What design pattern might be appropriate to use in this context? Why is it a partic-
ularly useful candidate?

3. Create a UML class diagram to show only the part of the system’s design which is
concerned with logging.

4. Write your implementation of the class diagram from the previous question using Java.

Cristina Adriana Alexandru. 21 Feb 2025.

3

public interface Act ionL i s t ene r extends EventLis tener {
void act ionPerformed (ActionEvent e) ;

}

public class ButtonDemo extends JPanel
implements Act ionL i s t ene r {

protected JButton b1 , b2 , b3 ;

public ButtonDemo () {
ImageIcon l e f tBut ton I con = createImageIcon (” images / r i g h t . g i f ”) ;
ImageIcon middleButtonIcon = createImageIcon (” images /middle . g i f ”) ;
ImageIcon r ightButtonIcon = createImageIcon (” images / l e f t . g i f ”) ;

b1 = new JButton (”Disab le middle button” , l e f tBut ton I con) ;
b1 . s e tVe r t i c a lTex tPo s i t i on (AbstractButton .CENTER) ;
b1 . s e tHor i zon ta lTextPos i t i on (AbstractButton .LEADING) ;
b1 . setMnemonic (KeyEvent .VK D) ;
b1 . setActionCommand (” d i s ab l e ”) ;

b2 = new JButton (”Middle button” , middleButtonIcon) ;
b2 . s e tVe r t i c a lTex tPo s i t i on (AbstractButton .BOTTOM) ;
b2 . s e tHor i zon ta lTextPos i t i on (AbstractButton .CENTER) ;
b2 . setMnemonic (KeyEvent .VKM) ;

b3 = new JButton (”Enable middle button” , r ightButtonIcon) ;
//Use the d e f a u l t t e x t p o s i t i o n o f CENTER, TRAILING (RIGHT) .
b3 . setMnemonic (KeyEvent .VK E) ;
b3 . setActionCommand (” enable ”) ;
b3 . setEnabled (fa l se) ;

// Li s t en f o r ac t i on s on bu t tons 1 and 3 .
b1 . addAct ionListener (this) ;
b3 . addAct ionListener (this) ;

b1 . setToolTipText (”Cl i ck t h i s button to d i s ab l e the middle button . ”) ;
b2 . setToolTipText (”This middle button does nothing when you c l i c k i t . ”) ;
b3 . setToolTipText (”Cl i ck t h i s button to enable the middle button . ”) ;

//Add Components to t h i s container , us ing the d e f a u l t FlowLayout .
add (b1) ;
add (b2) ;
add (b3) ;

}

public void act ionPerformed (ActionEvent e) {
i f (” d i s ab l e ” . equa l s (e . getActionCommand ())) {

b2 . setEnabled (fa l se) ;
b1 . setEnabled (fa l se) ;
b3 . setEnabled (true) ;

} else {
b2 . setEnabled (true) ;
b1 . setEnabled (true) ;
b3 . setEnabled (fa l se) ;

}
}
. . . .

} Figure 1: JButton demonstration code

4

	Introduction
	The Observer pattern
	Pattern identification 1
	Pattern identification 2

