Inf2-SEPP 2024-25
Tutorial 6 (Week 10)

Testing and Test Coverage

Study this tutorial sheet and make notes of your answers BEFORE the tutorial.

1 Introduction

The purpose of this tutorial is to get you to put into practice concepts that you have studied
in the lectures on testing: unit testing, system testing, test coverage. It also gives you a
glimpse into some of the important types of tasks that will be involved in your Coursework
3.

To be able to tackle this tutorial, apart from the lecture material you will also need to
be familiar with the JUnit5 automatic testing framework for Java. Here is a handy tutorial:
https://www.vogella.com/tutorials/JUnit/article.htmll

2 Task 1: Unit Testing and Test Coverage

In the last tutorial, you started work on a coffee calculator tool. You have now been assigned
to write tests for this tool. Within it, you have the following method:

int getReducedCalories(int initialCalories, boolean skimmedMilk, boolean sugarFreeSyrup){
if ((initialCalories<9) && (initialCalories>250))
return -1;
if (skimmedMilk==true)
return initialCalories - 70;
if (sugarFreeSyrup==true)
return initialCalories - 80;
return initialCalories;

You also have access to a requirements specification document, which includes a requirement
about allowing coffee shop employees to calculate the reduction in calories (natural number) of
an unsweetened cup of coffee when one or more of its contents are replaced with reduced-calory
alternatives, based on the initial number of calories of the given coffee type. The number of calories
of a cup of coffee (considering normal content quantities), depending on its type, can only vary
between 9 and 250 no matter the contents (type of milk, type of syrup), and the employee needs
to be notified in case he/she enters initial calory values that would ouput a result other than in

https://www.vogella.com/tutorials/JUnit/article.html

this interval. Moreover, the employee should be notified when they have not selected at least one
replacement content. Skimmed milk reduces the calories by 70 and sugar free syrup reduces them

by 80.

3

1.

Considering only the specification and not looking at the structure of the code (i.e. black box
testing), write the assert statements from within JUnit5 unit tests for this method. Make
sure that you test for any incorrect inputs as well as for all (or at least as many as you can
think of!) possible combinations of classes of values. Also, have the tests return intuitive
messages when failing. You can make the assumption that incorrect inputs should lead to
an output of -1.

(optional) Set up a project on your IDE, create a Calculator class, and copy the above method
in it. Then, set up a test class and write your tests for this class within it. Each test should
only be testing one set of inputs, i.e. have one assert statement. Run the tests.

What are the statement and branch coverage (considering only the code of the method) of
your tests? Calculate it on paper.

Is it possible to ever reach 100% statement and 100% branch coverage for this code? Write
any additional tests (this time white-box testing, as we are looking at the code) to maximise
the statement and branch coverage that you can get, then run them.

Which of the tests in your final set fail? Why? How would you fix the code? If you have
implemented the code (step 2), go ahead and make this change. How can you decide whether
the code is now correct?

Task 2: System Testing

You are now much more advanced in your work on the coffee calculator tool, and this tool has
been included in a coffee shop system. The coffee shop has made a decision to no longer use syrups
due to their negative impact on health. So far, it is only selling three types of coffee: flat white,
cappuccino and latte.

You are provided with a class diagram for the system, provided below. It omits the typically
looking getter and setter methods. Moreover, you are given the following description for the main
success scenarios and alternative scenarios of the ”Place Order” use case:

Coffee

- coffesBeanQuantty: double
- milkQuantity: double
- skimmed_milk: baolean

- caffeine: int

Order

- calories: int
-id:int

-fat: int
+ Order(coffess: Coffzel])
- price: int

String

- makePriceStatement: Sting

» | +getGarteine(: int

- makeCafizineStatement String

CoffeeType - makeCaloryStatement String

flat_white - makeFatStatement: String

cappuceino
latte. - nt

&
! [|

OrderManager FlatWhite Cappuccine Latte

+ addCoffseltype: CofesTyps, quanity: int, skimmedMilk: boolean): Sting + Espressofskimmed_milk: booiean) -+ Cappuccino(skimmed_milk bociean) + Latte(skimmed_milk: boolean)

+ getCaffeine(): int + getCaffeine(): int

~ placeOrder(): String + getCafreine(): int
l ~ gefCalories() int + getCalories() int + getGalories(): int

- getReducedCalories initialCalories: int, - getReducedCalories(initialCalories: int,
skimmedMilk boolean): int skimmedMilk boolean: int

- getReducadCalories(inttialCalories: int,
int ~ getFat(). int +getFat():int

skimmedMilk boolean):
Ingredient + getFat() int

+ getPrice(y: int + getPrice(: int

~type: IngredientType. -« getPrice): int

- lowFat: boolean

- quantity: double

+Ingredientitype: String, lowFat: boolean, quantity: double)

+ enoughStock(quantity: double): boolean

coffee_bean

milk

+ decreaseStock(quantity: double): boolean

Main Success Scenario:
1. The customer requests a certain quantity of a type of coffee (flat white,
cappuccino or latte), and indicates if they would like skimmed milk or not.
2. The system confirms the coffee type with required quantity was requested
3. The customer chooses to place the order.
4. The system confirms the order with a full statement including the order id,
caffeine, calories (considering the chosen type of milk), fat, as well as price.
Extensions:
2a. If the quantity is an invalid number or the coffee type provided is not
supported by the system, the system returns an error message "Invalid inputs
provided". The use case terminates.
3a. If the customer would like to add more coffees, return to MSS step 1
4a. If there is not enough stock of ingredients (coffee beans and/or milk
of the wanted type) left for making that quantity of the wanted type of coffee,
the system returns an error message "Not enough stock left to make
one or more coffees". The use case terminates.
4b. If the order contains several coffees, and there is not enough stock
of ingredients (coffee beans and/or milk
of the wanted type) left for making the quantity of any of the wanted types
of coffee, the system returns an error message "Not enough stock left to
make one or more coffees". The use case terminates.
4c If the order contains several coffees, and there is enough stock for all, the
system includes in the statement the order id, the total levels for caffeine,
calories, fat, and the total price.

1. Following the provided class diagram, figure out how the implementation would support the
above use case with all of its scenarios.

2. (Optional) Write the code to match the class diagram and address the use case with all of
its scenarios.

3. Write system tests to test each possible scenario in the use case. As the number of coffee
types ordered can be infinite, you are allowed to use a limit of 2 coffee types for testing
purposes. Moreover, you are encouraged to test with different coffee types, quantities and
milk types, to try to achieve as much coverage (statement and branch) as possible of the
code.

Cristina Adriana Alexandru. 20 March 2025.

	Introduction
	Task 1: Unit Testing and Test Coverage
	Task 2: System Testing

