
Lecture 2: Introduction to 
Software Development 
Activities and Processes

Adriana Sejfia

School of Informatics

University of Edinburgh



Summary

• Overview of software engineering activities

• Notion of a software development process

• Brief history of software engineering

• Software projects vs software products

• Introduction to plan-driven and agile software development 
processes



Software engineering activities

• Requirements capture

• Design

• Construction/implementation

• Testing, debugging

• Maintenance/evolution

A software (development) process is a description of how the above activities 
are ordered, planned and monitored.

The management of the software process is also a key software engineering 
activity



Requirements capture

• Identifying what the software must do (not how).

• Interesting issues:

• Multiple stakeholders often with different requirements -- how to resolve 
conflicts?

• Prioritisation. Which requirements should be met in which release?

• Maintenance: managing evolving requirements.



Design

• Requirements: what the software must do.

• Design: how should it do that?

• Higher level than code.

• Often involves use of a modelling language (e.g. UML)

• Multiple levels of design:
• architectural design

• high-level design

• detailed design

➢Interesting issues: understandability ("elegance"); robustness to requirement 
change; security; efficiency; division of responsibility ("buildability").



Construction/implementation

• More general than "coding", includes:

• detailed design (the level that doesn't get written down)

• coding

• unit testing

• managing code evolution

• writing developer-oriented documentation

➢Interesting issues: scale: managing large amounts of detail, esp. code. 
Need systems that work when it's not possible for one person to know 
everything.



Testing and debugging

• Testing happens at multiple levels

• unit tests written by developers

• customer acceptance testing.

• Debugging covers things like:

• "which line of code causes that crash?" 

• “why can't users work out how to do that?"

➢Interesting issues: containing cost -- how to test and debug efficiently; when 
to write tests; software tools to support testing and debugging



Maintenance/Evolution

• Any post-(major)-release change.

• fixing bugs

• enhancing existing functionality

• coping with a changing world

• Improving maintainability

• Traditionally an after-thought - mistakenly!

• In the "total cost of ownership" (TCO) of software system, 
maintenance/evolution costs often dwarf development costs.

➢Interesting issues: retaining flexibility; when to evolve system and when to 
replace



What are processes about?

• Ordering activities

• Outcomes of activities.

• Arrangement of people & resources to carry out activities

• Planning in advance of execution, predicting time/cost/resources

• Risk reduction

• Monitoring

• Enabling their own adaptation

➢Processes are complex and creative.



Brief history of software engineering: 
origins

• 1935: Alan Turing: idea of "software" as a computer program

• 1958: John Tukey used "software" term in print

• 1963/4: Margaret Hamilton (Apollo 11, Skylab space shuttle) first coined the term 
"software engineering" to distinguish her work from hardware engineering and 
give it legitimacy

• 1960s-1980s: "software crisis" due to rapid computing power increase at 
decreasing cost and difficulties to develop large complex software systems

• 1968-1969: NATO conferences on software engineering



Brief history of software engineering: 
the 1970s-early 1990s

• Microcomputer revolution

• Software engineering develops as a discipline

• Virtually all professional software meant to automate businesses: custom, 
"one-off", usually long-life

• Software projects set up to develop such systems: external customers required 
(through contract: the requirements document) and paid for custom functionality, 
the development, maintenance of the system, and any changes

• Development of plan-driven software development processes: controlled and 
rigorous ways of developing software; assumption that a lot of preparation is 
needed before writing a program; need for thorough documentation including 
graphical models of the software



Brief history of software engineering: 
since the 1990s

• Realisation that most businesses could manage with generic software built for 
common problems (cheaper, quicker to get)

• Increase in the need for small to medium software systems

• Dissatisfaction with plan-driven approach due to considerable overheads, late 
delivery, difficulty to respond to changes

• Developers started coming up with generic software products, with full control 
over their features, implementation and lifetime; paying customers only after 
release

• Development of agile software development processes: focus on software itself; 
delivering working software quickly to customers; avoiding work with dubious 
long-term benefits; reducing documentation



Project vs product based software engineering

Project-based SE Product-based SE

Initiated by an external customer who presents a problem Initiated by the developer who identifies an opportunity

Requirements captured from customer starting from problem Features decided by developer starting from opportunity

Developed based on customer needs defined in requirements Developed as generic solution, not for specific customer

Long-lived, maintained for customer Life duration decided by developer

Changes decided and paid by customer Changes decided by the developer

Important notes:
These were typical of the described moments in history. However, not all systems were the same and characteristics can be mix ed.
Plan-driven best suited for software projects, and agile for software products, with processes in their pure forms
In reality, processes and system types may be swapped; Moreover, the two types of processes often mixed.



Brief history of software engineering: 
another approach since the 2000s

• More reuse of existing software rather than developing software from 
scratch: integration, configuration for customer 

• Development of reusable software (stand-alone application systems, 
reusable components or packages, web services)

• Adoption of reuse-based development processes: mix of plan-driven 
and agile, because requirements gathered in advance (like in plan-
driven) but things can be changed and components reconfigured, 
often incremental (like in agile, see below)



Plan-driven processes are 
processes where all the process 

activities are planned in advance 
and progress is measured against 

this plan

(Ian Sommerville)



Plan-driven processes - main 
characteristics and applicability

• A lot of time and effort are spent in planning the system

• Everything is thoroughly documented; attempt to always keep documentation 
up-to-date

• Use of modelling (e.g. UML) for documenting requirements and design

• The system is specified in detail before implementation begins

• Errors, omissions and misunderstandings in the requirements often discovered late 
in the implementation (costly to fix)

• Reticence to change; inability to respond quickly to it

• Most appropriate for long lifetime, critical and embedded systems



Agile processes - introduction

• The Agile Manifesto http://agilemanifesto.org:

• "We are uncovering better ways of developing software by doing it and helping others do it. 
Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer* collaboration over contract negotiation

• Responding to change over following a plan

• That is, while there is value in the items on the right, we value the items on the left more."

*IMPORTANT! By "customer" meant initiator of requirements (even business person from 
development company!) here and in following slides.



Agile flowchart



12 principles of agile (from Agile 
Manifesto)

• 1. "Highest priority is to satisfy the customer through early and 
continuous delivery of valuable software".

• 2. "Welcome changing requirements, even late in development".

• 3. "Deliver working software frequently: couple of weeks - couple of 
months, with a preference to the shorter timescale".

• 4. "Business people and developers must work together daily".



12 principles of agile (from Agile 
Manifesto)

• 5. "Build projects around motivated individuals. Give them the 
environment and support they need, and trust them to get the job 
done".

• 6. "The most efficient and effective method of conveying information 
(...) is face-to-face conversation".

• 7. "Working software is the primary measure of progress".

• 8. "Sustainable development (...) to maintain a constant pace 
indefinitely".



12 principles of agile (from Agile 
Manifesto)

• 9. "Continuous attention to technical excellence and good design 
enhances agility".

• 10. "Simplicity -- the art of maximizing the amount of work not done -- is 
essential".

• 11. "The best architectures, requirements, and designs emerge from self-
organizing teams".

• 12. "At regular intervals, the team reflects on how to become more 
effective, then tunes and adjusts its behavior accordingly".



Where to apply plan-driven vs agile 
processes



Reading

• Essential:
• On software engineering activities: Sommerville SE Chapter 2 section 2.2.

• On software projects and software products and their engineering: Sommerville ESP 
Chapter 1 up to 1.1.

• On software development processes (overview): Sommerville SE Chapter 2 until 2.2

• On intro to agile software development processes (and comparison with plan-driven): 
Sommerville ESP Chapter 2 up to 2.2.

• An excellent overview of processes by Ian Sommerville: 
https://www.youtube.com/watch?v=q8X2Rk5sRFI&t

• Recommended:
• Stevens Chapter 1

• The Agile Manifesto: http://agilemanifesto.org/


	Slide 1: Lecture 2: Introduction to Software Development Activities and Processes
	Slide 2: Summary
	Slide 3: Software engineering activities
	Slide 4: Requirements capture
	Slide 5: Design
	Slide 6: Construction/implementation
	Slide 7: Testing and debugging
	Slide 8: Maintenance/Evolution
	Slide 9: What are processes about?
	Slide 10: Brief history of software engineering: origins
	Slide 11: Brief history of software engineering: the 1970s-early 1990s
	Slide 12: Brief history of software engineering: since the 1990s
	Slide 13
	Slide 14: Brief history of software engineering: another approach since the 2000s
	Slide 15
	Slide 16: Plan-driven processes - main characteristics and applicability
	Slide 17: Agile processes - introduction
	Slide 18: Agile flowchart
	Slide 19: 12 principles of agile (from Agile Manifesto)
	Slide 20: 12 principles of agile (from Agile Manifesto)
	Slide 21: 12 principles of agile (from Agile Manifesto)
	Slide 22: Where to apply plan-driven vs agile processes
	Slide 23: Reading

