
Lecture 4: Requirements
Engineering

Cristina Adriana Alexandru

School of Informatics

University of Edinburgh

• Objectives, motivation and structure of the Inf2C-SE course

• Why is Software Engineering still hard?

• Software engineering activities

• Brief history of SE

• Software project vs software product engineering

• Software development processes: plan-driven and agile

2

In week 1, on the SE part of this
course . . .

• Requirements engineering

• What is a requirement?

• Kinds of requirements

• Requirements vs. design

• The concept of a stakeholder

• Sub-activities of requirements engineering

3

This lecture

A software requirement is “a property that must be exhibited by

something in order to solve some problem in the real world" (From

SWEBOK V3, Ch1)

Requirements reflect the needs of different people at various levels

of the organisation.

Requirements engineering is often used to describe the systematic

handling of requirements

4

What is a software
requirement?

Functional requirements (services): What the system should do.

Non-functional requirements (constraints or quality requirements.):
How it should be: how fast it should be; how seldom it should fail;
what standards it should conform to; how easy it is to use; etc.

Informally called ‘ilities' because may refer to efficiency, security,
portability, usability etc.

5

Kinds of requirements

Non-functional requirements may be more important than functional
requirements!

• Can be workarounds for functional requirements

• User experience often shaped by non-functional requirements

Distinction not always clear-cut

• Security might initially be a non-functional requirement, but, when
requirements refined, it might result in addition of authorisation
functionality

6

Kinds of requirements

Requirements try to avoid design,

• expressing what is desired,

• not how what is desired should be realised

7

Requirements vs design

Requirements are usually relevant to multiple stakeholders.

Stakeholders are “any person or group who will be affected by the
system, directly or indirectly".

(from Sommerville “Software Engineering” chapter 4).

8

Stakeholders in requirements

Requirements are usually relevant to multiple stakeholders:

• End users

• Customers paying for software

• Government regulators

• System architects

• Software developers

• Software testers

• …

9

Stakeholders in requirements

10

Exercise (1)

11

Exercise (2)

• Gathering (elicitation)

• Sorting out (analysis)

• Writing down (specification)

• Checking (validation)

Activities often overlapping, not in strict sequence, and iterated.

Several approaches possible for each activity. Choice is very
dependent on nature of software developed and overall software
development process.

Requirements engineering is critical

• Faulty requirement processes can have huge knock-on consequences in
later software process activities.

• It is the major source of project failure according to Standish CHAOS reports.

• One motivation for incremental nature of Agile processes.
12

Requirements engineering
activities

• Goals: high-level objectives of software

• Domain Knowledge: Essential for understanding requirements

• Stakeholders: Vital, but they may nd expressing requirements
difficult

• Business rules: E.g. Uni regulations for course registration

• Operational Environment: E.g. concerning timing and performance

• Organisational Environment: How does software fit with existing
practices?

(From SWEBOK V3, Ch1)

13

Requirements elicitation
sources

Techniques include:

• Interviews

• Scenarios

• Prototypes

• Facilitated meetings

• Observation

14

Requirements elicitation
techniques

Traditional method: ask them what they want, or currently do

Can be challenging:

• Jargon confusing

• Interviewees omit information obvious to them

Important to

• be open minded: requirements may differ from those pre-conceived,

• prepare starting questions, e.g. from first-cut proposal for requirements.
Helps to focus dialogue

15

Requirements elicitation:
interviews

Scenarios are typical possible interactions with the system

• Provide a context or framework for questions.

• Allow “what if" or “how would you do this" questions.

• Easy for stakeholders to relate to

• Can be captured as user stories and use cases

16

Requirements elicitation:
scenarios

Can include

• screen mock-ups

• storyboards

• early versions of systems

Like scenarios, but more “real". High quality feedback. Often help to

resolve ambiguities.

17

Requirements elicitation:
prototypes

Get discussion going with multiple stakeholders in a structured
manner, to refine requirements

Help with:

• Requirements that are not about individual activities

• Surfacing / resolving conflicts

Need a trained facilitator.

18

Requirements elicitation:
facilitated meetings

Suitable if replacing existing system or business process

• Nuances can make or break a software product

Immersive method. Expensive.

Helps with:

• Surfacing complex / subtle tasks and processes

• Finding the nuances that people never tell you

Not so good if innovating

• Consider 15 years ago capturing requirements for a touchscreen
smartphone

19

Requirements elicitation:
observation

Requirements elicitation often produces a set of requirements that

• contains conflicts (e.g., one stakeholder wants one-click access to
data, another requires password protection)

• is too large for all requirements to be implemented.

Requirements analysis is the process of getting to a single consistent
set of requirements, classified and prioritised usefully, that will actually
be implemented.

20

Requirements analysis

Requirements can be recorded in various ways, perhaps using:

• very informal means e.g. handwritten cards in user stories in agile
development

• a document written in careful structured English, e.g.

• 3.1.4.4 The system shall... for an essential feature

• 3.1.4.5 The system should... for a desirable feature

• use case models with supporting text

• a formal specification in a mathematically-based language.

21

Requirements specification

Checks include:

• Consistency checks

• Completeness checks

• Realism checks:

• can requirements be met using time and money budgets?

• Verifiability:

• is it possible to test that each requirement is met?

• Applies to both functional and non-functional requirements.

• Non-functional requirements must be measurable.

 Response time must be under 1 sec,

 not Performance must be good.

22

Requirements validation

23

Exercise (3)

24

Exercise (4)

• SWEBOK V3, Chapter 1, Software Requirements.

• Sommerville SE, Part 1 chapter on Requirements Engineering.

• Browse for definitions of different non-functional requirements. You
may want to start from Wikipedia.

25

Resources

	Slide 1: Lecture 4: Requirements Engineering
	Slide 2:
	Slide 3:
	Slide 4:
	Slide 5:
	Slide 6:
	Slide 7:
	Slide 8:
	Slide 9:
	Slide 10:
	Slide 11:
	Slide 12:
	Slide 13:
	Slide 14:
	Slide 15:
	Slide 16:
	Slide 17:
	Slide 18:
	Slide 19:
	Slide 20:
	Slide 21:
	Slide 22:
	Slide 23:
	Slide 24:
	Slide 25:

