__3 P ; P.ﬁ"",-‘ THE UNIVERSITY of EDINBURGH

- ® e

y): informatics
Oy

Lecture 5: Use Cases, UML Use
Case Diagrams

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh

This lecture

« Use cases
« Notions of a use case, actor, use case scenario (instance)
* A template for describing use cases
« Connections and scope of use cases
« Use case diagrams defined by the Unified Modelling Language
« Requirements engineering organised by use cases
« Uses and problems with use cases

Infroduction to use cases

An important part of any requirements document for a system is @
description of the system's behaviour from the viewpoint of its users.

IMPORTANT NOTE: Here, a user is anything external to the system
which interacts with it, e.g. a human user, another system, @
hardware device, etc.

« Behaviour can be broken down into units, each triggered by some
user.

» Use cases are one way of describing these units

What is a use case?

A “task or coherent unit of functionality which the system is required

to support”, and which has value for at least one user (see previous
IMPORTANT NOTE).

(Stevens Chapter 7)

Named beginning with a verb, in capital

E.g. "Log in’, 'Buy a Product’, 'Complete returns form’, '‘Log out’ can all
e use case names.

Actors in use cases

Actors are a kind of user (see previous IMPORTANT NOTE) who takes
an active part in the use case:

« a human user of the system in a particular role E.g., BankCustomer and
not Mary.

« an external system, which in some role interacts with the system.
« an external device, which in some role interacts with the system.

The same human user, external system or device may interact with
the system in more than one role, and thus be (partly) represented by
more than one actor (e.g., a bank teller may happen also to be a
customer of the bank).

Actors have one-word capital names in singular, e.g. BookBorrower

Actors in use cases

The primary actor usually is the one (there can only be onel)
triggering the use case. E.g. Customer can trigger '‘Buy a Product’

Supporting actors may also be involved
Some stakeholders may not be actors. Reverse also true.

Each use case

* has a discrete goal the primary actor wishes to achieve; Short verb
phrase used as name of use case.

* includes a description of the sequence of interactions between the
system and actors (primary or supporting) in order to achieve the goal.

Exercise 1: Identify all the actors

A university provides a submit system that students can use to submit
their coursework, and later retrieve marks and feedback. Before a
course begins, the configuration for that course is set up by the
EUCLID student record system interacting with our system. Thereafter,
any student can submit work onto the system, and the lecturer can
refrieve the work submitted so far. Once marking is ready, lecturers
and markers can submit marks and feedback on the system, which
notifies the students.

Exercise 1: Identify all the actors

A university provides a submit system that students can use to submit
their coursework, and later retrieve marks and feedback. Before a
course begins, the configuration for that course is set up by the
EUCLID student record system interacting with our system. Thereafter,
any student can submit work onto the system, and the lecturer can
refrieve the work submitted so far. Once marking is ready, lecturers
and markers can submit marks and feedback on the system, which
notifies the students.

Answer: Student, StudentRecordSystem (role, not namel), Lecturer,
Marker

Use case scenarios (instances)

Usually a use case describes the main sequence of interactions
(i.e.steps, path) necessary to achieve the use case's goal.

There might also be alternative paths, including some handling when
all does not go to plan and the goal is not achieved.

Each path is called a use case instance or scenario

« One talks about the main success scenario and alternate success or
failure scenarios.

A use case is a set of scenarios tied together by a common user goal.

Warning: Sometimes scenario and use-case are synonyms (but not in
this coursel)

Example of use case scenarios
(instances)

Goal/ Use case name: Buy a Product

Main Success Scenario (MSS)
1. Customer browses catalogue and selects items to buy
Customer goes to check out
Customer fills in shipping info
System presents full pricing info
Customer fills in credit card info
System authorises purchase with customer
System confirms sale to customer
System sends confirmation email o customer

O NN

Example of use case scenarios
(instances) (cont)

Alternate Scenarios (extensions - variations on MSS)
3a : System recognises customer as a regular customer
.1 : System displays current shipping and credit card info

2 . Customer may accept or override these defaults. Return
to MSS at step 4, but skipping step 5.

6a . System fails to authorize credit card purchase
.1 : System notifies customer of problem. Use case terminates.

Phrase at the start of an extension is an enabling condition for that
extension

A template for describing use cases

« Goal - what the primary actor wishes to achieve

« Summary - a one or two sentence description of the use case.
- Stakeholders and each’s Interest in the use case

* Primary actor

« Supporting actors

» Trigger - the event that leads to this use case being performed.

« Pre-conditions/Assumptions - what can be assumed to be true
when the use case starts

 Guarantees - what the use case ensures at its end
» Success guarantees
* Failure guarantees
* Minimal guarantees

« Main Success Scenario
« Alternate scenarios

Use cases: connection and scope

A Use case:

« can have different levels of detail
* e.g. depending on where it is used in development process

* may refer to other use cases
« fo provide further information on particular steps
« may describe different scopes

« e.9g. asystem of systems, a single system or a single component of
a system

The Unified Modeling Language

« UML is a graphical language for recording aspects of the
requirements and design of software systems.

|t provides many diagram types; all the diagrams of a system
together form a UML model.

* Mostly tailored to an OO world-view

« Often used just for documentation, but in model-driven
development, a UML model may be used e.g. to generate and
update code and database schemas automatically.

* Many tools available to support UML

Use case diagrams

Are part of the Unified Modeling Language (UML).
Provide a high-level view of all the use cases for a given system.

Are easy to understand in their most basic form, so can be
discussed with customers who are not familiar with UML.

Represent:
« Actors as stick figures with one-word capital names in singular
» Use cases as named ovals with capital names starting with a verb

* Possible interactions between actors and use cases as the lines
connecting them

Use case diagrams: A very simple
example

BookBorrower

Borrow copy
of book Browser

Return copy
of book
Update
catalogue
Librarian

JournalBorrower

Use case generalisation

Used to show an is-a relationship: Librarian is-a MemberOfStaff.

A

lv1embeﬂr|0f81aﬁ

A

Librarian

Useful for obtaining the one single primary actor for some use cases

Exercise 2: Identify use cases
triggered by actors

A university provides a submit system that students can use to submit
their coursework, and later retrieve marks and feedback. Before a
course begins, the configuration for that course is set up by the
EUCLID student record system interacting with our system. Thereafter,
any student can submit work onto the system, and the lecturer can
refrieve the work submitted so far. Once marking is ready, lecturers
and markers can submit marks and feedback on the system, which
notifies the students.

Primary Actor Use cases
Student ?

StudentRecordSystem

?
Lecturer ?
Marker ?

Exercise 2: Identify use cases
triggered by actors

A university provides a submit system that students can use to submit
their coursework, and later retrieve marks and feedback. Before a
course begins, the configuration for that course is set up by the
EUCLID student record system interacting with our system. Thereafter,
any student can submit work onto the system, and the lecturer can
refrieve the work submitted so far. Once marking is ready, lecturers
and markers can submit marks and feedback on the system, which
notifies the students.

Answer:

Primary Actor Use cases

Student 'Submit coursework’, 'Retrieve marks and feedback’

StudentRecordSystem | 'Set up course configuration’

Lecturer 'Retrieve coursework’, 'Submit marks and feedback’
Marker 'Submit marks and feedback’

Exercise 3: Draw use case diagram

1. Using the derived primary actors and their use cases, draw the
use case diagram.

Primary Actor Use cases

Student 'Submit coursework’, 'Retrieve marks and feedback’

StudentRecordSystem | 'Set up course configuration’

Lecturer 'Retrieve coursework’, 'Submit marks and feedback’
Marker 'Submit marks and feedback’

2. Then, also identify any supporting actors and add the possible
interactions between them and use cases.

Exercise 3: Draw use case diagram

1. Solution representing only the possible interactions between
primary actor - use cases.

Submit coursework
Retrieve marks and
|
Stugent feadback
/ \ Submit marks and
feedback
Submitter
&
:’ :
Marker Lecturer
Set up course
configuration

StudentRecordSystem

Exercise 3: Draw use case diagram

2. Adding the possible interactions between supporting actors - use

cases (Student supporting actor in 'Submit marks and feedback’)

s Retreve marks and
fl
Stude

X

Submitter

i i Retrieve coursework
Markar Lecturer
Set up course
configuration

StudentRecordSystem

Submit marks and
feedback

Requirements engineering organised
by use cases

« Use cases can help with requirements engineering by providing a
structured way to go about it:
1. identify the actors
2. foreach actor, find out
« what they need from the system
* any other interactions they expect to have with the system
* which use cases have what priority for them

« Good for both requirements specification and iterated
requirements elicitation.

« Use cases primarily capture functional requirements, but sometimes
non-functional requirements are attached to a use case.

« Other times, non-functional requirements apply to subsets or all of
the use cases.

Uses of use cases in software
processes

» Driving design

» Design validation

* You can walk through how a design realises a use case, checking that
the set of classes provides the needed functionality and that the

interactions are as expected.

» Testing
« Use cases can be a good source of system tests

Possible problems with use cases

« Interactions spelled out may be too detailed, may needlessly
constrain design

« May specify supporting actors that are not essential for fulfilling the
goal of the primary actor

« Does borrowing a book have to involve a librarian?

« Focus on operational nature of system may result in less attention to
software architecture and static object structure

* May miss requirements not naturally associated with actors

Reading

« Sommerville SE. Use Cases discussed are both in Requirements and

System Modeling chapters. Look up Use Cases in index to find the
relevant sections.

« Stevens, Chapter /.

	Slide 1: Lecture 5: Use Cases, UML Use Case Diagrams
	Slide 2:
	Slide 3:
	Slide 4:
	Slide 5: Actors in use cases
	Slide 6: Actors in use cases
	Slide 7: Exercise 1: Identify all the actors
	Slide 8: Exercise 1: Identify all the actors
	Slide 9: Use case scenarios (instances)
	Slide 10: Example of use case scenarios (instances)
	Slide 11: Example of use case scenarios (instances) (cont)
	Slide 12: A template for describing use cases
	Slide 13: Use cases: connection and scope
	Slide 14: The Unified Modeling Language
	Slide 15: Use case diagrams
	Slide 16: Use case diagrams: A very simple example
	Slide 17: Use case generalisation
	Slide 18: Exercise 2: Identify use cases triggered by actors
	Slide 19: Exercise 2: Identify use cases triggered by actors
	Slide 20: Exercise 3: Draw use case diagram
	Slide 21: Exercise 3: Draw use case diagram
	Slide 22: Exercise 3: Draw use case diagram
	Slide 23: Requirements engineering organised by use cases
	Slide 24: Uses of use cases in software processes
	Slide 25: Possible problems with use cases
	Slide 26: Reading

