
Lecture 6: Requirements in Plan-driven 
vs Agile Processes, Software Project 

vs Software Product Engineering

Cristina Adriana Alexandru

School of Informatics

University of Edinburgh



• Requirements engineering (RE), with subactivities and techniques

• General, classic way of presenting this topic

• Not only for a certain type of software (software project or software 
product)

• Not only for a certain type of software development process (plan-
driven or agile)

• Use cases and use case diagrams

• Often associated to documentation which is more heavyweight in 
plan-driven, but . . .

• Use cases can be varied in granularity and also used in agile!

• UML invented and promoted as part of a plan-driven process, but it is a 
modelling language building abstractions and so can be used in any 
software development process!

2

Last lectures



• RE in plan-driven vs agile software development processes

• RE in software projects vs software products

• New techniques: personnas, scenarios, user stories

3

Summary



• Reminder: following a plan, 'heavyweight' documentation, 
reticence to change

• Additionally:

• Different SE activities seen as separate stages, each with its output 
which is used for planning next stage

• Formal documents produced between the different stages

• Iteration within the stages themselves

4

Plan-driven development 
processes- Some more pieces to
the puzzle



• Getting requirements 'right' and then producing a thorough 
requirements specification document

• This document feeds into design and implementation 
activities

• There can still be iteration back to RE activity (depending on 
the process)

5

RE in plan-driven development 
processes



• Reminder: values more individuals and interaction, producing 
working software ('lightweight' documentation), customer 
collaboration, responding to change

• Additionally:

• Iterative and incremental, working software after each iteration

• Focus on design and implementation ('working software')

• Most important unfinished features (i.e. requirements) chosen for each 
iteration

• Each iteration occurs across activities, with activities interleaved: 
includes a little bit of requirements engineering, a little bit of design, a 
little bit of implementation, then repeat

6

Agile development processes- 
Some more pieces to the
puzzle



• Happening at the same time with design and implementation in 
each iteration

• Broken down and dispersed within each iteration, 
omnipresent

• Details are discovered and unfold slowly

• No prescribed way to document requirements, 'just enough’

7

RE in agile development 
processes



• Reminder: In software projects, requirements provided as a 
contract (requirements specification document)/changed by 
paying customer; large, long-lived systems.

• Plan-driven best choice (see Lecture 2)

• 'Pure' agile incompatible with the need to stick to a 
requirements specification document

   Solution:

• Contract missing the requirements specification document

• Customer paying for time and not functionality

• Disagreements and conflict possible.

8

RE in software projects



Reminder: In software products, features (i.e. requirements) decided/ 
changed by dev team; small-medium sized system for several 
potential customers

• Important considerations:

1. Need to attract customers to buy product

2. Need to beat competition

3. Speedy delivery to the market of the essence

4. Reactivity to changes (needs, competitors with new features)

5. Few products have innovated without customer input; Fewer have 
then kept their customers.

• Points 1-4 motivate the need for agile, ideally suited

• 'Pure' plan-driven not good

• Point 5 motivates the need to find out potential user needs

9

RE in software products



Interviews, surveys, facilitated meetings expensive

For small companies, informal user analysis and discussions preferred: 
asking potential users about their work, the software that they use, its 
strengths and weaknesses

Then, personnas, scenarios and user stories can be used to suggest 
requirements (IMPORTANT! Requirements decided by development 
company)

10

RE in software products: 
Understanding user needs



'Imagined users'/character portraits describing a type of user

Can be derived from informal discussions, and should be cross-
checked against the user data

Numerous templates available for defining a persona

Common components of a personna:

• Personalisation: name, personal circumstances, stock photograph

• Job-related (if business product): about their job and (if necessary) 
what it involves

• Education: background, level of technical skills and experience

• Relevance: motivation for using the product, what may want to do 
with it

11

Understanding user needs: 
Personnas



Example (for GymClass, an online gym class booking system):

Francesca, a fitness coach

12

Understanding user needs: 
Personnas



Advantages of personnas:

• Help explain why the system would be useful and give examples of 
what users may want to do with it

• Help team reach shared vision about users, their skills and motivations 
(otherwise inconsistencies leading to inconsistent requirements 
possible)

• Developers empathising/stepping into the users' shoes

Disadvantage: will overlap after a number of personnas.

Sommerville advises using max 5, which will help find the key system 
features.

13

Understanding user needs: 
Personnas



Narrative explaining the context (the user's problem), and an 
imagined way that the user may address it (on or outside the system), 
written from the perspective of the user

Can be based on personnas or real users

For software products: Sommerville suggests using high-level 
scenarios, different to use case scenarios!

14

Understanding user needs: 
Scenarios



Most important components of a scenario:

• Brief statement of overall objective

• References to the personna involved

• What is involved in reaching the objective

• (Optional) Problem that cannot be addressed by current system

• (Optional) One way that the identified problem might be addressed

15

Understanding user needs: 
Scenarios



Example: Francesca's scenario: Setting up her Aerobics class on 
GymClass

16

Understanding user needs: 
Scenarios



Advantages of scenarios:

• Like personnas, help reach shared understanding of system

• Way of brainstorming with the team what system should do; help move 
towards requirements

• Facilitate communication and stimulate design creativity

• Read naturally, provide context

• Easy to write and understand, and so useful to get users involved in 
their development

Disadvantages:

• Not specifications, so may be incomplete, lack detail

• Overlap

Sommerville recommends using 3-4 scenarios/personna.

17

Understanding user needs: 
Scenarios



Finer-grained narratives setting in a structured way a single thing that 
a user wants from the system

Can be derived from scenarios, but more user stories may be 
needed for a complete description of functionality

18

Understanding user needs: User 
stories



Formats:

As a <role>, I <want/need> to <do something>

or

As a <role>, I <want/need> to <do something> so that <reason>

The latter is helpful if developers unfamiliar with what users do, and 
can help come up with alternatives for providing what the user 
needs.

19

Understanding user needs: User 
stories



Examples: Francesca's user stories

20

Understanding user needs: User 
stories



Advantages of user stories:

• Like personnas and scenarios, help reach a shared understanding of 
the system

• Like scenarios, way of brainstorming with the team what the system 
should do; help move towards requirements

• Like scenarios, facilitate communication and stimulate design creativity

• If sufficiently detailed, can be used for planning the next iteration in 
agile

Disadvantages:

• Like scenarios, not specifications, so may be incomplete, lack detail

Scenarios are: more natural, easier to relate to and easier to 
understand by users; provide more context about user actions and 
way of working

21

Understanding user needs: User 
stories



Look through scenarios and:

1. Identify actions denoted by active verbs (e.g. use, send, update, 
open, etc.)

2. Highlight their phrases

3. Think about what can support these actions on the system and how 
they could be implemented

User stories may immediately suggest requirements

22

Deciding requirements from 
scenarios and user stories



Consider user needs

Can result in a software product that is accepted by users

But . . .

Lock in existing ways of working, by showing how users currently

do things

Advice: start by using them, but then also think creatively about

other/additional more efficient and interesting options

23

Advantages/disadvantages of 
scenarios and user stories for
suggesting requirements



• Essential: On RE in agile vs. plan-driven: Sommerville SE Chapter 3 
up until 3.1

• On scaling up agile (i.e. using it for large systems): Sommerville SE 
Chapter 3 Section 3.4 (Essential: especially until 3.4.3)

• Essential: On RE in software product engineering: Sommerville ESP 
Chapter 3

24

Reading


	Slide 1:  Lecture 6: Requirements in Plan-driven  vs Agile Processes, Software Project  vs Software Product Engineering
	Slide 2:  
	Slide 3:  
	Slide 4:  
	Slide 5:  
	Slide 6:  
	Slide 7:  
	Slide 8:  
	Slide 9:  
	Slide 10:  
	Slide 11:  
	Slide 12:  
	Slide 13:  
	Slide 14:  
	Slide 15:  
	Slide 16:  
	Slide 17:  
	Slide 18:  
	Slide 19:  
	Slide 20:  
	Slide 21:  
	Slide 22:  
	Slide 23:  
	Slide 24:  

