__3 P ; P.ﬁ"",-‘ THE UNIVERSITY of EDINBURGH

- ® e

y): informatics
Oy

Lecture 6: Requirements in Plan-driven
vs Agile Processes, Software Project
vs Software Product Engmeermg

Cristina Adriana Alexandru

School of Informatics
University of Edinburgh

Last lectures

« Requirements engineering (RE), with subactivities and techniques
« General, classic way of presenting this topic

« Not only for a certain type of software (software project or soffware
product)

« Not only for a certain type of software development process (plan-
driven or agile)

« Use cases and use case diagrams

« Often associated to documentation which is more heavyweight in
plan-driven, but . ..

« Use cases can be varied in granularity and also used in agile!

« UML invented and promoted as part of a plan-driven process, but it is a
modelling language building abstractions and so can be used in any
software development process!

Summary

* RE in plan-driven vs agile software development processes

« RE in software projects vs software products
« New techniques: personnas, scenarios, user stories

Plan-driven development
processes- Some more pieces to
the puzzle

« Reminder: following a plan, 'heavyweight' documentation,
retficence to change

« Additionally:

« Different SE activities seen as separate stages, each with its output
which is used for planning next stage

« Formal documents produced between the different stages
 Iteration within the stages themselves

RE in plan-driven development
processes

« Getting requirements 'right' and then producing a thorough
requirements specification document

» This document feeds into design and implementation
activities

« There can still be iteration back to RE activity (depending on
the process)

Plan-based development

¥

[Requirements .| Requirements ~ Design and
_engineering specification _implementation

Requirements change
requests

Taken from: Sommerville, |., 2016. 'Software Engineering 10'. Harlow: Pearson Education Limited.

Agile development processes-
Some more pieces to the
puzzle

« Reminder: values more individuals and interaction, producing
working software (lightweight' documentation), customer
collaboration, responding to change

« Additionally:

lterative and incremental, working software after each iteration
Focus on design and implementation (‘working software')

Most important unfinished features (i.e. requirements) chosen for each
iteration

Each iteration occurs across activities, with activities interleaved:
includes a little bit of requirements engineering, a little bit of design, @
little bit of implementation, then repeat

RE in agile development
processes

Happening at the same time with design and implementation in
each iteration

Broken down and dispersed within each iteration,
omnipresent

Details are discovered and unfold slowly
No prescribed way to document requirements, 'just enough’

Agile development

Requirementsx"\‘ Design and ki
‘,‘ engineering implementation
\ -/ S y

o -

Taken from: Sommerville, I., 2016. 'Software Engineering 10'. Harlow: Pearson Education Limited.

RE in software projects

« Reminder: In software projects, requirements provided as @
conftract (requirements specification document)/changed by
paying customer; large, long-lived systems.

* Plan-driven best choice (see Lecture 2)

« 'Pure’ agile incompatible with the need to stick to a
requirements specification document

Solution:
« Confract missing the requirements specification document
« Customer paying for fime and not functionality
« Disagreements and conflict possible.

RE in software productis

Reminder: In software products, features (i.e. requirements) decided/
changed by dev team; small-medium sized system for several
potential customers

» Important considerations:

Need to attract customers to buy product

Need to beat competition

Speedy delivery to the market of the essence

Reactivity to changes (heeds, competitors with new features)

Few products have innovated without customer input; Fewer have
then kept their customers.

« Points 1-4 motivate the need for agile, ideally suited
« 'Pure' plan-driven not good
« Point 5 motivates the need to find out potential user needs

oMM

RE in software products:
Understanding user needs

Interviews, surveys, facilitated meetings expensive

For small companies, informal user analysis and discussions preferred:
asking potential users about their work, the software that they use, its
strengths and weaknesses

Then, personnas, scenarios and user stories can be used to suggest
requirements (IMPORTANT! Requirements decided by development
company)

10

Understanding user needs:
Personnas

Imagined users'/character portraits describing a type of user

Can be derived from informal discussions, and should be cross-
checked against the user data

Numerous templates available for defining a persona

Common components of a personna:
« Personalisation: name, personal circumstances, stock photograph

« Job-related (if business product): about their job and (if necessary)
what it involves

« Education: background, level of technical skills and experience

» Relevance: motivation for using the product, what may want to do
with it

11

Understanding user needs:
Personnas

Example (for GymClass, an online gym class booking system):
Francesca, a fithess coach

Francesca, age 23, is a part-time fitness coach in Central Gym. She is also a full-time
4th year Masters student in Psychology in the local university. Originally from Italy,
she has grown up in a small town with a long tradition for sporting competitions,
and has always been passionate about sports and exercise. She has a diploma in
Psychology from the University of Pisa. Since moving to the UK in 2014, Francesca
has occupied several part-time jobs before finally ending up in the current position
which she sees as a perfect fit as it allows her to keep being active while also observing
human psychology and its relationship with sports and exercise. She is single, has a
very busy lifestyle, and is not very comfortable with technology.

Francesca has been struggling with the current gym class booking system, which she
finds very unfriendly and unintuitive, and this is why she often relies on her more
tech-savvy colleagues in making class bookings for the gym members. However, she
is glad that the system will soon be replaced with GymClass which promises to be
more catered towards the needs of CentralGym coaches, and she is happy to give
it a go. Now that she is leading her own Aerobics class, she would be particularly
interested in using it for setting up the class and managing her list of attendees.

Understanding user needs:
Personnas

Advantages of personnas:

« Help explain why the system would be useful and give examples of
what users may want to do with it

« Help tfeam reach shared vision about users, their skills and motivations
(otherwise inconsistencies leading to inconsistent requirements
possible)

« Developers empathising/stepping into the users' shoes
Disadvantage: will overlap after a number of personnas.

Sommerville advises using max 5, which will help find the key system
features.

13

Understanding user needs:
Scenarios

Narrative explaining the context (the user's problem), and an
imagined way that the user may address it (on or outside the system),
wriften from the perspective of the user

Can be based on personnas or real users

For software products: Sommerville suggests using high-level
scenarios, different to use case scenarios!

14

Understanding user needs:
Scenarios

Most important components of a scenario:
« Brief statement of overall objective
References to the personna involved
What is involved in reaching the objective
(Optional) Problem that cannot be addressed by current system
(Optional) One way that the identified problem might be addressed

15

Understanding user needs:
Scenarios

Example: Francesca's scenario: Setting up her Aerobics class on
GymClass

Francesca is a fitness coach in Central Gym. She has recently been promoted to
leading a new Aerobics class, which will take place during early mornings on weekdays
to attract professionals and students. As with several other classes in Central Gym,
the class should accept both gym members holding yearly memberships, as well as
one-day gym members.

Francesca logs into her GymClass account with her staff number and password. The
system recognises that she is working in the central Edinburgh gym, and provides a
welcome screen which is populated with news on current classes, how busy it is, and
popular sports and exercise blog posts. Francesca navigates to the area for classes,
and the system shows a list of all existing classes. Her 'My classes’ area is currently
empty. She proceeds to choosing to create a new class. The system prompts her for
the class details including class name, timetable, number of accepted attendees. At
the next step, Francesca is asked for more advanced settings, and it is here that she
needs to select opening ip up for one-day members. Finally, she has the choice of
whether to make the class available for bookings, or save it for later. ... Francesca
also wants to add details about her profile for the class. As she never uses Flickr,
she chooses the option to upload photos of herself from her computer. . ..

Understanding user needs:
Scenarios

Advantages of scenarios:
« Like personnas, help reach shared understanding of system

« Way of brainstorming with the team what system should do; help move
towards requirements

« Facilitate communication and stimulate design creativity
 Read naturally, provide context
« Easy to write and understand, and so useful to get users involved in
their development
Disadvantages:
« Not specifications, so may be incomplete, lack detail
« Overlap

Sommerville recommends using 3-4 scenarios/personna.

17

Understanding user needs: User
stories

Finer-grained narratives sefting in a structured way a single thing that
a user wants from the system

Can be derived from scenarios, but more user stories may be
needed for a complete description of functionality

18

Understanding user needs: User
stories

Formats:
As a <role>, | <want/need> to <do something>

or
As a <role>, | <want/need> to <do something> so that <reason>

The latter is helpful if developers unfamiliar with what users do, and
can help come up with alternatives for providing what the user
needs.

19

Understanding user needs: User
stories

Examples: Francesca's user stories

As a fitness instructor, | want to be able to set up my own classes on GymClass.

As a fitness instructor, | want to be able to make classes available to one-day gym
members.

As a fitness instructor, | need to be able to upload photos of myself for my classes’

instructor profile from my computer so that | don't need to use online image hosting
services that | am not familiar with.

20

Understanding user needs: User
stories

Advantages of user stories:

» Like personnas and scenarios, help reach a shared understanding of
the system

» Like scenarios, way of brainstorming with the team what the system
should do; help move towards requirements

« Like scenarios, facilitate communication and stimulate design creativity
 If sufficiently detailed, can be used for planning the next iteration in
agile
Disadvantages:
» Like scenarios, not specifications, so may be incomplete, lack detail

Scenarios are: more natural, easier to relate to and easier to
understand by users; provide more context about user actions and
way of working

21

Deciding requirements from
scenarios and user stories

Look through scenarios and:

1. Identify actions denoted by active verbs (e.g. use, send, update,
open, etc.)

2. Highlight their phrases

3. Think about what can support these actions on the system and how
they could be implemented

User stories may immediately suggest requirements

22

Advantages/disadvantages of
scenarios and user stories for
suggesting requirements

Consider user needs

Can result in a software product that is accepted by users

But ...

Lock in existing ways of working, by showing how users currently
do things

Advice: start by using them, but then also think creatively about
other/additional more efficient and interesting options

23

Reading

« Essential: On RE in agile vs. plan-driven: Sommerville SE Chapter 3
up until 3.1

« On scaling up agile (i.e. using it for large systems): Sommerville SE
Chapter 3 Section 3.4 (Essential: especially until 3.4.3)

« Essential: On RE in software product engineering: Sommerville ESP
Chapter 3

24

	Slide 1: Lecture 6: Requirements in Plan-driven vs Agile Processes, Software Project vs Software Product Engineering
	Slide 2:
	Slide 3:
	Slide 4:
	Slide 5:
	Slide 6:
	Slide 7:
	Slide 8:
	Slide 9:
	Slide 10:
	Slide 11:
	Slide 12:
	Slide 13:
	Slide 14:
	Slide 15:
	Slide 16:
	Slide 17:
	Slide 18:
	Slide 19:
	Slide 20:
	Slide 21:
	Slide 22:
	Slide 23:
	Slide 24:

