
Inf2-SEPP
Lecture 7: 

Introduction to Design. 
Architectural Design

Adriana Sejfia

School of Informatics

University of Edinburgh



Previous lectures

• Requirements engineering:

• In general, with its concepts and sub-activities

• Using use cases and use case diagrams

• In different types of systems and software development processes

• Use of personas, scenarios and user stories in product engineering



This lecture

• Design

• Concept

• Outputs of the design process

• Criteria for good design

• Levels of design

• Architectural design

• Concept and importance of an architecture

• Considerations for architectural design: system decomposition, distribution, 
technologies

• Some important architectures



What is design?

Design is the process of deciding how software will 
meet requirements.



What is design?

Design is the process of deciding how software will 
meet requirements.

Usually excludes detailed coding level.



Outputs of design process

Outputs include:

• models.

• E.g. using UML or Simulink

• Often graphical

• Can be executable



Outputs of design process

Outputs include:

• models.

• E.g. using UML or Simulink

• Often graphical

• Can be executable

• written documents

• Important that these record reasons for decisions



(Some) criteria for a good design

• It can meet the known requirements
(functional and non-functional)



(Some) criteria for a good design

• It can meet the known requirements
(functional and non-functional)

• It is maintainable:
i.e. it can be adapted to meet future requirements



(Some) criteria for a good design

• It can meet the known requirements
(functional and non-functional)

• It is maintainable:
i.e. it can be adapted to meet future requirements

• It is straightforward to explain to implementors



(Some) criteria for a good design

• It can meet the known requirements
(functional and non-functional)

• It is maintainable:
i.e. it can be adapted to meet future requirements

• It is straightforward to explain to implementors

• It makes appropriate use of existing technology,
e.g. reusable components



(Some) criteria for a good design

• It can meet the known requirements
(functional and non-functional)

• It is maintainable:
i.e. it can be adapted to meet future requirements

• It is straightforward to explain to implementors

• It makes appropriate use of existing technology,
e.g. reusable components

Notice the human angle and the situation-dependency, e.g.

• Who will implement the design? OO programmers or functional programmers?

• What kind of future changes do we expect?



Levels of design

Design occurs at different levels, e.g. someone must decide:

• how is your system split up into subsystems?
(high-level, or architectural, design)

• what are the classes in each subsystem?
(low-level, or detailed, design)



What is an architecture?

An architecture is the fundamental organisation of a software 
system embodied in its components, their relationships to 
each other and to the environment, and the principles 

guiding its design and evolution (IEEE)



What is an architecture?

An architecture is the fundamental organisation of a software 
system embodied in its components, their relationships to 
each other and to the environment, and the principles 

guiding its design and evolution (IEEE)

• Pervasive, hence hard to change. 

• An alternative definition: "what stays the same" 

• as the system develops

• between related systems.



Other important definitions: 
component, service, module
A service is a "coherent unit of functionality" (Sommerville ESP)



Other important definitions: 
component, service, module
A service is a "coherent unit of functionality" (Sommerville ESP)

A component is "a named software unit that offers one or more 
services to other software components or to end-users of the 
software". It "can be anything from a program (large scale) to 
an object (small scale)". (Sommerville ESP)



Other important definitions: 
component, service, module
A service is a "coherent unit of functionality" (Sommerville ESP)

A component is "a named software unit that offers one or more 
services to other software components or to end-users of the 
software". It "can be anything from a program (large scale) to 
an object (small scale)". (Sommerville ESP)

A module is a "named set of components" which "should have 
something in common. For example, they may provide a set 
of related services" (Sommerville ESP)



Why is architecture important?

• Because it has a fundamental influence on non-functional (very important!) 
characteristics of the system:

• Non-functional attributes may not all be optimizable

• E.g. two components sharing or not a database has different cost vs. 
maintainability and resilience effects



Why is architecture important?

• Because it has a fundamental influence on non-functional (very important!) 
characteristics of the system:

• Non-functional attributes may not all be optimizable

• E.g. two components sharing or not a database has different cost vs. 
maintainability and resilience effects

• Because it affects the complexity of the software: 

• The more complex, the less maintainable, more error prone, less secure.

• Minimising complexity important goal for architectural design



Architectural design

Involves creating a description of the architecture showing 
components and their relationships.



Architectural design

Involves creating a description of the architecture showing 
components and their relationships.

Important architectural design issues to consider:

• Non-functional requirements



Architectural design

Involves creating a description of the architecture showing 
components and their relationships.

Important architectural design issues to consider:

• Non-functional requirements

• Product lifetime: if long-lived, architecture should be able to evolve



Architectural design

Involves creating a description of the architecture showing 
components and their relationships.

Important architectural design issues to consider:

• Non-functional requirements

• Product lifetime: if long-lived, architecture should be able to evolve

• Software reuse: saves time, constrains architectural choices



Architectural design

Involves creating a description of the architecture showing 
components and their relationships.

Important architectural design issues to consider:

• Non-functional requirements

• Product lifetime: if long-lived, architecture should be able to evolve

• Software reuse: saves time, constrains architectural choices

• Number of users: if very variable, architecture should allow quickly scaling up and 
down



Architectural design

Involves creating a description of the architecture showing 
components and their relationships.

Important architectural design issues to consider:

• Non-functional requirements

• Product lifetime: if long-lived, architecture should be able to evolve

• Software reuse: saves time, constrains architectural choices

• Number of users: if very variable, architecture should allow quickly scaling up and 
down

• Software compatibility: constrains architectural choices



Architectural design

Involves creating a description of the architecture showing 
components and their relationships.

Important architectural design issues to consider:

• Non-functional requirements

• Product lifetime: if long-lived, architecture should be able to evolve

• Software reuse: saves time, constrains architectural choices

• Number of users: if very variable, architecture should allow quickly scaling up and 
down

• Software compatibility: constrains architectural choices

• Planned schedule, team capabilities, budget etc.



Architectural design: trade-offs

• Maintainability vs performance: having fine-grained components with individual 
responsibilities and own data structures is good for maintainability, but affects 
performance due to communication and data transfer overheads



Architectural design: trade-offs

• Maintainability vs performance: having fine-grained components with individual 
responsibilities and own data structures is good for maintainability, but affects 
performance due to communication and data transfer overheads

• Security vs usability: layers of components can help with security, but affect 
usability as multiple authentication layers frustrate users.



Architectural design: trade-offs

• Maintainability vs performance: having fine-grained components with individual 
responsibilities and own data structures is good for maintainability, but affects 
performance due to communication and data transfer overheads

• Security vs usability: layers of components can help with security, but affect 
usability as multiple authentication layers frustrate users.

• Availability vs time to market and cost: redundant components help with 
availability, but at increased cost, complexity, error proneness.



Architectural design: main questions

1. How should the system be decomposed into a set of 

components?



Architectural design: main questions

1. How should the system be decomposed into a set of 

components?

2. (web-based systems) How should the components be 

distributed and how should they communicate?



Architectural design: main questions

1. How should the system be decomposed into a set of 

components?

2. (web-based systems) How should the components be 

distributed and how should they communicate?

3. What technologies should be used in developing the 

system?



1. Decomposing the system into 
architectural components

Identifying large-scale components, then analysing and splitting 
them up into smaller components.



1. Decomposing the system into 
architectural components

Identifying large-scale components, then analysing and splitting 
them up into smaller components.

Concerns:

• Some non-functional requirements (e.g. security, performance, reliability) 
may be cross-cutting

• Complexity (major concern) due to the number of components and their 
relationships (exponential).



1. Decomposing the system into 
architectural components

Design guidelines for controlling complexity:

• Separation of concerns: components doing only one thing; grouping 
components with related functionality.

• Implement once: not duplicating functionality

• Stable interfaces: hiding a component's implementation details behind a 
component interface (API) so that dependant components do not need to 
change when this component changes



1. Decomposing the system into 
architectural components

Design guidelines for controlling complexity:

• Separation of concerns: components doing only one thing; grouping 
components with related functionality.

• Implement once: not duplicating functionality



1. Decomposing the system into 
architectural components

Design guidelines for controlling complexity:

• Separation of concerns: components doing only one thing; grouping 
components with related functionality.

• Implement once: not duplicating functionality

• Stable interfaces: hiding a component's implementation details behind a 
component interface (API) so that dependent components do not need to 
change when this component changes



Example: A generic layered architecture 
for a web-based application

Taken from: Sommerville, I., 2020. Engineering Software Products. Pearson.



2. The distribution architecture 
(for web-based systems)

Defines how components are distributed online.

Some well-known architectures:

• Client-server architecture, with some variations:

• Multi-tier client server architecture

• Service-oriented architecture

• Peer to peer architecture

• Message bus architecture



Client-server architecture: 
high-level view with one server



Client-server architecture: 
logical view for web-based and mobile 
software systems

• Taken from: Sommerville, I., 2020. Engineering Software Products. Pearson.



Client-server architecture: 
logical view for web-based and mobile 
software systems

• Clients send requests to servers, which process these requests and provide a response

• Client responsible for user interaction, based on the data moving between it and the 
server

• Servers initially conducted all processing, now clients are computers or mobile devices 
with large processing power so significant processing on clients

• Several servers e.g. web and database

• Load balancer distributes requests to servers, ensures even load

• Organised frequently using the Model-View-Controller (MVC) pattern.



Client-server architecture variation 1: 
The multi-tier client-server architecture

• Use of an object-oriented approach (from the 1990s)

• Single "monolithic" system with a shared database

• Several communicating servers with different individual responsibilities and 
running large software components

• Good if using structured data with concurrent updates, and for business 
systems running on local servers.



Client-server architecture variation 1: 
The multi-tier client-server architecture

Taken from: Sommerville, I., 2020. Engineering Software Products. Pearson.



Client-server architecture variation 2: 
The service-oriented architecture

• More modern, becoming the norm

• Fine-grained services that may be provided by many servers

• Services are stateless, so independent and can be replicated, distributed, 
migrated between servers

• Good if system components need to be updated often, or there is a need 
for scalability (e.g. use on the cloud) and resilience to failure



Client-server architecture variation 2: 
The service-oriented architecture

Taken from: Sommerville, I., 2020. Engineering Software Products. Pearson.



Peer to peer architecture



Message bus architecture



3. Technological considerations

Technologies need to be decided since architectural design, as changing 
them later is difficult and expensive



3. Technological considerations

Technologies need to be decided since architectural design, as changing 
them later is difficult and expensive

Technologies to consider:

• Database: relational or NoSQL?



3. Technological considerations

Technologies need to be decided since architectural design, as changing 
them later is difficult and expensive

Technologies to consider:

• Database: relational or NoSQL?

• Delivery platform: browser-based or mobile?

• Server: using the cloud and, if so, what cloud provider?



3. Technological considerations

Technologies need to be decided since architectural design, as changing 
them later is difficult and expensive

Technologies to consider:

• Database: relational or NoSQL?

• Delivery platform: browser-based or mobile?

• Server: using the cloud and, if so, what cloud provider?

• Use of open source software? Proprietary software?



3. Technological considerations

Technologies need to be decided since architectural design, as changing 
them later is difficult and expensive

Technologies to consider:

• Database: relational or NoSQL?

• Delivery platform: browser-based or mobile?

• Server: using the cloud and, if so, what cloud provider?

• Use of open source software?

• Development technology: mobile development toolkits, web application 
frameworks advantageous?



Resources

• Essential: Sommerville ESP Chapter 4

• Essential: Sommerville SE 6.1, 6.3.3


	Slide 1: Inf2-SEPP Lecture 7:  Introduction to Design. Architectural Design
	Slide 2: Previous lectures
	Slide 3: This lecture
	Slide 4: What is design?
	Slide 5: What is design?
	Slide 6: Outputs of design process
	Slide 7: Outputs of design process
	Slide 8: (Some) criteria for a good design
	Slide 9: (Some) criteria for a good design
	Slide 10: (Some) criteria for a good design
	Slide 11: (Some) criteria for a good design
	Slide 12: (Some) criteria for a good design
	Slide 13: Levels of design
	Slide 14: What is an architecture?
	Slide 15: What is an architecture?
	Slide 16: Other important definitions: component, service, module
	Slide 17: Other important definitions: component, service, module
	Slide 18: Other important definitions: component, service, module
	Slide 19: Why is architecture important?
	Slide 20: Why is architecture important?
	Slide 21: Architectural design
	Slide 22: Architectural design
	Slide 23: Architectural design
	Slide 24: Architectural design
	Slide 25: Architectural design
	Slide 26: Architectural design
	Slide 27: Architectural design
	Slide 28: Architectural design: trade-offs
	Slide 29: Architectural design: trade-offs
	Slide 30: Architectural design: trade-offs
	Slide 31: Architectural design: main questions
	Slide 32: Architectural design: main questions
	Slide 33: Architectural design: main questions
	Slide 34: 1. Decomposing the system into architectural components
	Slide 35: 1. Decomposing the system into architectural components
	Slide 36: 1. Decomposing the system into architectural components
	Slide 37: 1. Decomposing the system into architectural components
	Slide 38: 1. Decomposing the system into architectural components
	Slide 39: Example: A generic layered architecture for a web-based application
	Slide 40: 2. The distribution architecture  (for web-based systems)
	Slide 41: Client-server architecture:  high-level view with one server
	Slide 42: Client-server architecture:  logical view for web-based and mobile software systems
	Slide 43: Client-server architecture:  logical view for web-based and mobile software systems
	Slide 44: Client-server architecture variation 1:  The multi-tier client-server architecture
	Slide 45: Client-server architecture variation 1:  The multi-tier client-server architecture
	Slide 46: Client-server architecture variation 2: The service-oriented architecture
	Slide 47: Client-server architecture variation 2: The service-oriented architecture
	Slide 48: Peer to peer architecture
	Slide 49: Message bus architecture
	Slide 50: 3. Technological considerations
	Slide 51: 3. Technological considerations
	Slide 52: 3. Technological considerations
	Slide 53: 3. Technological considerations
	Slide 54: 3. Technological considerations
	Slide 55: Resources

