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FIRST THINGS
FIRST

A CONFESSION...




| love software engineering

Always did, always will do. Going down, deep down, where nobody has been
before. ..

| am no augur

| can read the trends, see the current patterns and add my own thoughts. These
are mine. Don't have to be true. ..

Al in SE can be great (if used right)

Alis a wonderful tool. It's a tool — you need apply it correctly. Especially in SE,
even more in restricted / controlled environments. Used in the wrong way it can
harm and destruct; used properly it creates benefit and value.

Sometimes “out of the box” approaches (aka seemingly failures) brake new
paths (Post-It, Viagra, ...)

| HAVE TO ADMIT...
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Past Current Al Impacted
Requirements Requirements Requirements
Engineering Engineering Engineering
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Document-Centric Approach
Heavy upfront documentation with detailed Software Requirements Specification
(SRS) documents before development begins.

Waterfall Integration
Requirements phase completed entirely before design starts, following strict
sequential lifecycle phases.

Formal Sign-offs
Stakeholder approval gates with change control boards managing any
modifications to approved requirements.

Big Design Up Front (BDUF)

- - -

— e .='_':. 7 _— . . .
-. - B Comprehensive analysis attempts to capture all requirements before any

g 'I'HE PAST (OR | implementation work begins.
c U R RENT“') Limited Customer Interaction

Customer involvement primarily at project start and end, with minimal feedback

during development
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User Stories and Epics
Lightweight requirement artifacts capturing user needs from end-user
perspective, enabling iterative refinement.

Continuous Discovery
Ongoing requirements elicitation throughout the project, adapting to emerging
needs and customer feedback.

Product Backlog Management
Dynamic prioritization based on business value, technical dependencies, and
stakeholder input.

Collaborative Workshops
Cross-functional sessions like story mapping, refinement meetings, and design

MDSTI_Y NOW“. thinking workshops.

Acceptance Criteria
Testable conditions defining requirement completion, enabling continuous

validation and verification.
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Al-Assisted Elicitation
LLMs generate user stories, identify missing requirements, and suggest edge

cases from minimal input.

Automated Analysis
Al tools detect ambiguities, conflicts, and inconsistencies in requirement
specifications automatically.

Natural Language Processing
Requirements extracted from documents, emails, meetings, and customer
feedback at scale.

Intelligent Validation
Al-powered testing of requirements against design and implementation for
continuous traceability.

Rapid Prototyping
Al generates mockups, prototypes, and initial code directly from requirement
descriptions.
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Development

Deployment

Analysis ¢ Implementation ¢ Evaluation
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Product Management.

, Story Breakdown and Estimation

Idea to Epic Formation
= Business identifies needs, transformed into ideas and formalized as Epics by

A \\. Epics are broken into Stories, with developers estimating effort for effective
— p— 8\ o ticket management.
B
, \ Development and Code Review
' Developers implement code and submit pull requests for peer review to maintain
quality.

N

Execution and Control

Project Management controls the execution of the tickets / stories and

OVERVIEW OF SD I_c emergencies. Compiles status reports and steering notes
STAGES Testing and Deployment

QA performs acceptance and penetration testing; DevOps manages deployment
to production.
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Al DISRUPTION
IN SDLC




Al Accelerates Ideation

Al tools generate prototypes rapidly, speeding up ideation and validation in
product development.

Al Transforms Development

Al alters code writing, review, and maintenance, fundamentally changing
software development workflows.

Project Management Challenges

Al-generated automation creates unpredictability, complicating project timeline
estimation for managers. Sometimes project management becomes a team task
and tickets are abandoned altogether

Business Investment Shifts

POINTS DF DISRUPTION Businesses favor fast Al-driven solutions over foundational technologies, risking
AND GHANGE long-term sustainability.

Break early / break fast and “garbage engineering” getting ever more dominant.
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DEVELOPMENT
PARADIGM SHIFT




EVOLUTION OF
DEVELOPMENT ROLES AND
PRACTICES
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Historical Development Roles

Earlier development separated system and application programmers, shaping
structured roles in software creation.

Reactive Al-Driven Development

Modern development integrates Al tools like LLMs, fostering an exploratory and
reactive coding approach.

Challenges with Al Integration

Al-generated outputs lack predictability and consistency, requiring new oversight
and integration strategies.

Tool Support in Modern Development

The integration of Al'into DEV tools (Claude / Cline, Github Copilot, JetBrains Al,
etc.) adds benefit yet pose additional challenges as well.
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Al IN ISSUE RESOLUTION
WORKFLOWS

Automation of Issue Tracking

Al enables automatic creation of development tickets from
detected issues, speeding up the resolution process.

Al-Powered Development Assistance

Al development assistants suggest or implement fixes,
reducing manual intervention and enhancing workflow
efficiency.

Risks and Governance

Dependence on Al introduces risks that require validation and
governance to ensure code quality and accountability.
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AUTOMATION AND
GENERATION OF QA
ARTIFACTS

L
S % THE UNIVERSITY of EDINBURGH

& informatics

Automated Unit Test Generation

Al automatically generates unit tests, increasing coverage but producing
complex, hard-to-read code.

Al-Driven Component Testing

Cucumber scripts generated from Swagger endpoints enable scalable and
consistent component testing.

On-the-Fly Testing Tools

Al creates testing tools dynamically, such as Python scripts to test REST services
across multiple languages.

Acceptance Criteria Extraction

Acceptance criteria are extracted from screenshots, documents, or JIRA tickets
to automate validation processes.

PR Review as 1st line of defense

Tools like PR Buddy help summarize pull requests, improving code review
efficiency and collaboration.
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STRATEGIES FOR EFFECTIVE Al

INTEGRATION
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Architectural Oversight

Architectural views help teams understand Al tool
plans, providing necessary oversight during integration.

Enhanced Code Quality Checks

Al tools improve code quality by identifying issues and
suggesting improvements during pull requests.

Precise Prompt Generation

Tools like Cline help generate precise prompts, reducing
randomness when interacting with language models.

Structured Al Usage

Following 'don't shake the tree directly' principle
ensures intentional Al use, avoiding wasteful trial and
error.

informatics
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CHALLENGES AND
OF Al ADOPTION
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Al supports a clearer vision and ideation

Al adoption pushes experimentation, prototyping and validation earlier in the
development lifecycle creating better software (less misinterpretation).

Al promotes the Dunning-Kruger effect

Al empowers users currently outside the SDLC, often raising the stakes for those
in more classical roles.

Code Quality and Maintenance

Maintaining Al-generated code raises questions on responsibility for updates
and validation over time.

Complexity and Cost

Gen-Al especially with laC tools increases complexity and operational costs,
complicating Al adoption decisions.

Knowledge Retrieval Challenges

Difficulty in accessing relevant Al knowledge highlights potential for large
language models as meta-retrieval layers.
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Critical Thinking with Al Tools

Approach Al tools thoughtfully, understanding their specific applications and
inherent learning curves.

Challenges of Disruptive Tools

Disruptive Al tools require significant time and effort to master and integrate
effectively.

Risks of Unstructured Experimentation

The 'Try & Pray" approach to Al often causes inefficiencies and frustration
without clear goals.

Importance of Training and Evaluation

EVAI_UATING Tfefams mlust ir;vest.idn trai:ir;g and structured evaluation to leverage Al tools
APPI.IBAB".ITY AND effectively and avold wasted resources.
LIMITATIONS
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UNKNOWN DANGERS ARE

LURKING
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Exposing your [P

IP — perhaps the most valuable asset — can be significantly exposed (and learned
from) by utilizing external Al tools. Own hosting is, curated LLMs and offline
mode (Llama, etc.) are options.

MCP servers

Many security issues are still pending and not everything which shines is gold.
You can create quite an uncontrollable tools-landscape (aka Noah's arch) with
too much and no proper constraint

| said “lunch” — not “launch”

Does my Al system really understand me? Can | express myself clear enough?

Think twice and measure seven times

Al needs questioning and interrogation. Especially as it is autonomous, feels
omnipotent and acts like an emperor without constraint.
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