! Dr Michael

REFLEGTIONS ON ™
REQUIREMENTS
ENGINEERING AND
% SDLGC CHANGES IN
3 AN Al AGE

TRANSFORMING DEVELOPMENT THROUGH
INTELLIGENT AUTOMATION AND INNOVATION

FIRST THINGS
FIRST

A CONFESSION...

| love software engineering

Always did, always will do. Going down, deep down, where nobody has been
before. ..

| am no augur

| can read the trends, see the current patterns and add my own thoughts. These
are mine. Don't have to be true. ..

Al in SE can be great (if used right)

Alis a wonderful tool. It's a tool — you need apply it correctly. Especially in SE,
even more in restricted / controlled environments. Used in the wrong way it can
harm and destruct; used properly it creates benefit and value.

Sometimes “out of the box” approaches (aka seemingly failures) brake new
paths (Post-It, Viagra, ...)

| HAVE TO ADMIT...

HE UNIVERSITY of EDINBURGH

nformatics

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

REQUIREMENTS
ENGINEERING

Past Current Al Impacted
Requirements Requirements Requirements
Engineering Engineering Engineering

\\"‘W-’-";,xf
Y N7 .’i THE UNIVERSITY of EDINBURGH

& informatics

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

Document-Centric Approach
Heavy upfront documentation with detailed Software Requirements Specification
(SRS) documents before development begins.

Waterfall Integration
Requirements phase completed entirely before design starts, following strict
sequential lifecycle phases.

Formal Sign-offs
Stakeholder approval gates with change control boards managing any
modifications to approved requirements.

Big Design Up Front (BDUF)

- - -

— e .='_':. 7 _— . . .
-. - B Comprehensive analysis attempts to capture all requirements before any

g 'I'HE PAST (OR | implementation work begins.
c U R RENT“') Limited Customer Interaction

Customer involvement primarily at project start and end, with minimal feedback

during development

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

User Stories and Epics
Lightweight requirement artifacts capturing user needs from end-user
perspective, enabling iterative refinement.

Continuous Discovery
Ongoing requirements elicitation throughout the project, adapting to emerging
needs and customer feedback.

Product Backlog Management
Dynamic prioritization based on business value, technical dependencies, and
stakeholder input.

Collaborative Workshops
Cross-functional sessions like story mapping, refinement meetings, and design

MDSTI_Y NOW“. thinking workshops.

Acceptance Criteria
Testable conditions defining requirement completion, enabling continuous

validation and verification.

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

Al-Assisted Elicitation
LLMs generate user stories, identify missing requirements, and suggest edge

cases from minimal input.

Automated Analysis
Al tools detect ambiguities, conflicts, and inconsistencies in requirement
specifications automatically.

Natural Language Processing
Requirements extracted from documents, emails, meetings, and customer
feedback at scale.

Intelligent Validation
Al-powered testing of requirements against design and implementation for
continuous traceability.

Rapid Prototyping
Al generates mockups, prototypes, and initial code directly from requirement
descriptions.

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

GURRENI
SOFTWARE
DEVELOPMENT
LIFECYCLE (SDLC)

R
\~. THE UNIVERSITY ofEI

& informatics

.
}‘J Planning

Maintenance

Software Development
Life Cycle

<g
i N

Development

Deployment

Analysis ¢ Implementation ¢ Evaluation

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

Product Management.

, Story Breakdown and Estimation

Idea to Epic Formation
= Business identifies needs, transformed into ideas and formalized as Epics by

A \\. Epics are broken into Stories, with developers estimating effort for effective
— p— 8\ o ticket management.
B
, \ Development and Code Review
' Developers implement code and submit pull requests for peer review to maintain
quality.

N

Execution and Control

Project Management controls the execution of the tickets / stories and

OVERVIEW OF SD I_c emergencies. Compiles status reports and steering notes
STAGES Testing and Deployment

QA performs acceptance and penetration testing; DevOps manages deployment
to production.

\". THE UNIVERSITY of EDINBURGH

%) informatics

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

Al DISRUPTION
IN SDLC

Al Accelerates Ideation

Al tools generate prototypes rapidly, speeding up ideation and validation in
product development.

Al Transforms Development

Al alters code writing, review, and maintenance, fundamentally changing
software development workflows.

Project Management Challenges

Al-generated automation creates unpredictability, complicating project timeline
estimation for managers. Sometimes project management becomes a team task
and tickets are abandoned altogether

Business Investment Shifts

POINTS DF DISRUPTION Businesses favor fast Al-driven solutions over foundational technologies, risking
AND GHANGE long-term sustainability.

Break early / break fast and “garbage engineering” getting ever more dominant.

\. THE UNIVERSITY of EDINBURGH

&y informatics

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

DEVELOPMENT
PARADIGM SHIFT

EVOLUTION OF
DEVELOPMENT ROLES AND
PRACTICES

. THE UNIVERSITY of EDINBURGH

&) informatics

Historical Development Roles

Earlier development separated system and application programmers, shaping
structured roles in software creation.

Reactive Al-Driven Development

Modern development integrates Al tools like LLMs, fostering an exploratory and
reactive coding approach.

Challenges with Al Integration

Al-generated outputs lack predictability and consistency, requiring new oversight
and integration strategies.

Tool Support in Modern Development

The integration of Al'into DEV tools (Claude / Cline, Github Copilot, JetBrains Al,
etc.) adds benefit yet pose additional challenges as well.

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

INGIDENT AND
PROBLEM
MANAGEMENT

@ informatics

Al IN ISSUE RESOLUTION
WORKFLOWS

Automation of Issue Tracking

Al enables automatic creation of development tickets from
detected issues, speeding up the resolution process.

Al-Powered Development Assistance

Al development assistants suggest or implement fixes,
reducing manual intervention and enhancing workflow
efficiency.

Risks and Governance

Dependence on Al introduces risks that require validation and
governance to ensure code quality and accountability.

\. THE UNIVERSITY of EDINBURGH

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

Al IN QUALITY
ASSURANCE

AUTOMATION AND
GENERATION OF QA
ARTIFACTS

L
S % THE UNIVERSITY of EDINBURGH

& informatics

Automated Unit Test Generation

Al automatically generates unit tests, increasing coverage but producing
complex, hard-to-read code.

Al-Driven Component Testing

Cucumber scripts generated from Swagger endpoints enable scalable and
consistent component testing.

On-the-Fly Testing Tools

Al creates testing tools dynamically, such as Python scripts to test REST services
across multiple languages.

Acceptance Criteria Extraction

Acceptance criteria are extracted from screenshots, documents, or JIRA tickets
to automate validation processes.

PR Review as 1st line of defense

Tools like PR Buddy help summarize pull requests, improving code review
efficiency and collaboration.

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

UTILIZING Al
TOOLS

STRATEGIES FOR EFFECTIVE Al

INTEGRATION

THE UNIVERSITY of EDINBURGH

Architectural Oversight

Architectural views help teams understand Al tool
plans, providing necessary oversight during integration.

Enhanced Code Quality Checks

Al tools improve code quality by identifying issues and
suggesting improvements during pull requests.

Precise Prompt Generation

Tools like Cline help generate precise prompts, reducing
randomness when interacting with language models.

Structured Al Usage

Following 'don't shake the tree directly' principle
ensures intentional Al use, avoiding wasteful trial and
error.

informatics

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

21

STRATEGIC
TAKEAWAYS

(05 Sk 27

CHALLENGES AND
OF Al ADOPTION

THE UNIVERSITY of EDINBURGH

informatics

Al supports a clearer vision and ideation

Al adoption pushes experimentation, prototyping and validation earlier in the
development lifecycle creating better software (less misinterpretation).

Al promotes the Dunning-Kruger effect

Al empowers users currently outside the SDLC, often raising the stakes for those
in more classical roles.

Code Quality and Maintenance

Maintaining Al-generated code raises questions on responsibility for updates
and validation over time.

Complexity and Cost

Gen-Al especially with laC tools increases complexity and operational costs,
complicating Al adoption decisions.

Knowledge Retrieval Challenges

Difficulty in accessing relevant Al knowledge highlights potential for large
language models as meta-retrieval layers.

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

23

GRITICAL
THINKING ON Al

TOOLS

Critical Thinking with Al Tools

Approach Al tools thoughtfully, understanding their specific applications and
inherent learning curves.

Challenges of Disruptive Tools

Disruptive Al tools require significant time and effort to master and integrate
effectively.

Risks of Unstructured Experimentation

The 'Try & Pray" approach to Al often causes inefficiencies and frustration
without clear goals.

Importance of Training and Evaluation

EVAI_UATING Tfefams mlust ir;vest.idn trai:ir;g and structured evaluation to leverage Al tools
APPI.IBAB".ITY AND effectively and avold wasted resources.
LIMITATIONS

\. THE UNIVERSITY of EDINBURGH

@ informatics

25

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

HIC DRACONIS

Crop

T
.
I

UNKNOWN DANGERS ARE

LURKING

HE UNIVERSITY of EDINBURGH

Exposing your [P

IP — perhaps the most valuable asset — can be significantly exposed (and learned
from) by utilizing external Al tools. Own hosting is, curated LLMs and offline
mode (Llama, etc.) are options.

MCP servers

Many security issues are still pending and not everything which shines is gold.
You can create quite an uncontrollable tools-landscape (aka Noah's arch) with
too much and no proper constraint

| said “lunch” — not “launch”

Does my Al system really understand me? Can | express myself clear enough?

Think twice and measure seven times

Al needs questioning and interrogation. Especially as it is autonomous, feels
omnipotent and acts like an emperor without constraint.

nformatics

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

27

	The Impact of AI on Software Engineering
	Slide 1: Reflections on Requirements Engineering and SDLC changes in an AI age

	Current Software Development Lifecycle (SDLC)
	Slide 2: First things first A Confession…
	Slide 3: I have to admit…
	Slide 4: Requirements engineering
	Slide 5
	Slide 6: THE PAST (or Current…)
	Slide 7: MOSTLY NOW…
	Slide 8: The future?
	Slide 9: Current Software Development Lifecycle (SDLC)
	Slide 10
	Slide 11: Overview of SDLC stages

	AI Disruption in SDLC
	Slide 12: AI Disruption in SDLC
	Slide 13: Points of disruption and change

	Development Paradigm Shift
	Slide 14: Development Paradigm Shift
	Slide 15: Evolution of development roles and practices

	Incident and Problem Management
	Slide 16: Incident and Problem Management
	Slide 17: AI in issue resolution workflows

	AI in Quality Assurance
	Slide 18: AI in Quality Assurance
	Slide 19: Automation and generation of QA artifacts

	Utilizing AI Tools
	Slide 20: Utilizing AI Tools
	Slide 21: Strategies for effective AI integration

	Strategic Takeaways
	Slide 22: Strategic Takeaways
	Slide 23: Challenges and risks of AI adoption

	Critical Thinking on AI Tools
	Slide 24: Critical Thinking on AI Tools
	Slide 25: Evaluating applicability and limitations
	Slide 26: hic draconis
	Slide 27: Unknown dangers are lurking

