
Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

REFLECTIONS ON
REQUIREMENTS
ENGINEERING AND
SDLC CHANGES IN
AN AI AGE

TRANSFORMING DEVELOPMENT THROUGH
INTELLIGENT AUTOMATION AND INNOVATION

1 Dr Michael
Glienecke

2

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

I love software engineering

Always did, always will do. Going down, deep down, where nobody has been

before…

I am no augur

I can read the trends, see the current patterns and add my own thoughts. These

are mine. Don’t have to be true…

AI in SE can be great (if used right)

AI is a wonderful tool. It’s a tool – you need apply it correctly. Especially in SE,

even more in restricted / controlled environments. Used in the wrong way it can

harm and destruct; used properly it creates benefit and value.

Sometimes “out of the box” approaches (aka seemingly failures) brake new

paths (Post-It, Viagra, …)

3

I HAVE TO ADMIT…

4

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

5

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

THE PAST (OR
CURRENT…)

Document-Centric Approach

Heavy upfront documentation with detailed Software Requirements Specification

(SRS) documents before development begins.

Waterfall Integration

Requirements phase completed entirely before design starts, following strict

sequential lifecycle phases.

Formal Sign-offs

Stakeholder approval gates with change control boards managing any

modifications to approved requirements.

Big Design Up Front (BDUF)

Comprehensive analysis attempts to capture all requirements before any

implementation work begins.

Limited Customer Interaction

Customer involvement primarily at project start and end, with minimal feedback

during development

6

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

MOSTLY NOW…

User Stories and Epics

Lightweight requirement artifacts capturing user needs from end-user

perspective, enabling iterative refinement.

Continuous Discovery

Ongoing requirements elicitation throughout the project, adapting to emerging

needs and customer feedback.

Product Backlog Management

Dynamic prioritization based on business value, technical dependencies, and

stakeholder input.

Collaborative Workshops

Cross-functional sessions like story mapping, refinement meetings, and design

thinking workshops.

Acceptance Criteria

Testable conditions defining requirement completion, enabling continuous

validation and verification.

7

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

THE FUTURE?

AI-Assisted Elicitation

LLMs generate user stories, identify missing requirements, and suggest edge

cases from minimal input.

Automated Analysis

AI tools detect ambiguities, conflicts, and inconsistencies in requirement

specifications automatically.

Natural Language Processing

Requirements extracted from documents, emails, meetings, and customer

feedback at scale.

Intelligent Validation

AI-powered testing of requirements against design and implementation for

continuous traceability.

Rapid Prototyping

AI generates mockups, prototypes, and initial code directly from requirement

descriptions.

8

9

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

10

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

OVERVIEW OF SDLC
STAGES

Idea to Epic Formation

Business identifies needs, transformed into ideas and formalized as Epics by

Product Management.

Story Breakdown and Estimation

Epics are broken into Stories, with developers estimating effort for effective

ticket management.

Development and Code Review

Developers implement code and submit pull requests for peer review to maintain

quality.

Execution and Control

Project Management controls the execution of the tickets / stories and

emergencies. Compiles status reports and steering notes

Testing and Deployment

QA performs acceptance and penetration testing; DevOps manages deployment

to production.

11

12

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

POINTS OF DISRUPTION
AND CHANGE

AI Accelerates Ideation

AI tools generate prototypes rapidly, speeding up ideation and validation in

product development.

AI Transforms Development

AI alters code writing, review, and maintenance, fundamentally changing

software development workflows.

Project Management Challenges

AI-generated automation creates unpredictability, complicating project timeline

estimation for managers. Sometimes project management becomes a team task

and tickets are abandoned altogether

Business Investment Shifts

Businesses favor fast AI-driven solutions over foundational technologies, risking

long-term sustainability.

Break early / break fast and “garbage engineering” getting ever more dominant.

13

14

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

EVOLUTION OF
DEVELOPMENT ROLES AND
PRACTICES

Historical Development Roles

Earlier development separated system and application programmers, shaping

structured roles in software creation.

Reactive AI-Driven Development

Modern development integrates AI tools like LLMs, fostering an exploratory and

reactive coding approach.

Challenges with AI Integration

AI-generated outputs lack predictability and consistency, requiring new oversight

and integration strategies.

Tool Support in Modern Development

The integration of AI into DEV tools (Claude / Cline, Github Copilot, JetBrains AI,

etc.) adds benefit yet pose additional challenges as well.

15

16

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

AI IN ISSUE RESOLUTION
WORKFLOWS
Automation of Issue Tracking

AI enables automatic creation of development tickets from

detected issues, speeding up the resolution process.

AI-Powered Development Assistance

AI development assistants suggest or implement fixes,

reducing manual intervention and enhancing workflow

efficiency.

Risks and Governance

Dependence on AI introduces risks that require validation and

governance to ensure code quality and accountability.

17

18

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

AUTOMATION AND
GENERATION OF QA
ARTIFACTS

Automated Unit Test Generation

AI automatically generates unit tests, increasing coverage but producing

complex, hard-to-read code.

AI-Driven Component Testing

Cucumber scripts generated from Swagger endpoints enable scalable and

consistent component testing.

On-the-Fly Testing Tools

AI creates testing tools dynamically, such as Python scripts to test REST services

across multiple languages.

Acceptance Criteria Extraction

Acceptance criteria are extracted from screenshots, documents, or JIRA tickets

to automate validation processes.

PR Review as 1st line of defense

Tools like PR Buddy help summarize pull requests, improving code review

efficiency and collaboration.

19

20

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

STRATEGIES FOR EFFECTIVE AI
INTEGRATION

Architectural Oversight

Architectural views help teams understand AI tool

plans, providing necessary oversight during integration.

Enhanced Code Quality Checks

AI tools improve code quality by identifying issues and

suggesting improvements during pull requests.

Precise Prompt Generation

Tools like Cline help generate precise prompts, reducing

randomness when interacting with language models.

Structured AI Usage

Following 'don't shake the tree directly' principle

ensures intentional AI use, avoiding wasteful trial and

error.

21

22

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

CHALLENGES AND RISKS
OF AI ADOPTION

AI supports a clearer vision and ideation

AI adoption pushes experimentation, prototyping and validation earlier in the

development lifecycle creating better software (less misinterpretation).

AI promotes the Dunning-Kruger effect

AI empowers users currently outside the SDLC, often raising the stakes for those

in more classical roles.

Code Quality and Maintenance

Maintaining AI-generated code raises questions on responsibility for updates

and validation over time.

Complexity and Cost

Gen-AI especially with IaC tools increases complexity and operational costs,

complicating AI adoption decisions.

Knowledge Retrieval Challenges

Difficulty in accessing relevant AI knowledge highlights potential for large

language models as meta-retrieval layers.

23

24

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

EVALUATING
APPLICABILITY AND
LIMITATIONS

Critical Thinking with AI Tools

Approach AI tools thoughtfully, understanding their specific applications and

inherent learning curves.

Challenges of Disruptive Tools

Disruptive AI tools require significant time and effort to master and integrate

effectively.

Risks of Unstructured Experimentation

The 'Try & Pray' approach to AI often causes inefficiencies and frustration

without clear goals.

Importance of Training and Evaluation

Teams must invest in training and structured evaluation to leverage AI tools

effectively and avoid wasted resources.

25

26

Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2025. Not for Redistribution.

UNKNOWN DANGERS ARE
LURKING

Exposing your IP

IP – perhaps the most valuable asset – can be significantly exposed (and learned

from) by utilizing external AI tools. Own hosting is, curated LLMs and offline

mode (Llama, etc.) are options.

MCP servers

Many security issues are still pending and not everything which shines is gold.

You can create quite an uncontrollable tools-landscape (aka Noah’s arch) with

too much and no proper constraint

I said “lunch” – not “launch”

Does my AI system really understand me? Can I express myself clear enough?

Think twice and measure seven times

AI needs questioning and interrogation. Especially as it is autonomous, feels

omnipotent and acts like an emperor without constraint.

27

	The Impact of AI on Software Engineering
	Slide 1: Reflections on Requirements Engineering and SDLC changes in an AI age

	Current Software Development Lifecycle (SDLC)
	Slide 2: First things first A Confession…
	Slide 3: I have to admit…
	Slide 4: Requirements engineering
	Slide 5
	Slide 6: THE PAST (or Current…)
	Slide 7: MOSTLY NOW…
	Slide 8: The future?
	Slide 9: Current Software Development Lifecycle (SDLC)
	Slide 10
	Slide 11: Overview of SDLC stages

	AI Disruption in SDLC
	Slide 12: AI Disruption in SDLC
	Slide 13: Points of disruption and change

	Development Paradigm Shift
	Slide 14: Development Paradigm Shift
	Slide 15: Evolution of development roles and practices

	Incident and Problem Management
	Slide 16: Incident and Problem Management
	Slide 17: AI in issue resolution workflows

	AI in Quality Assurance
	Slide 18: AI in Quality Assurance
	Slide 19: Automation and generation of QA artifacts

	Utilizing AI Tools
	Slide 20: Utilizing AI Tools
	Slide 21: Strategies for effective AI integration

	Strategic Takeaways
	Slide 22: Strategic Takeaways
	Slide 23: Challenges and risks of AI adoption

	Critical Thinking on AI Tools
	Slide 24: Critical Thinking on AI Tools
	Slide 25: Evaluating applicability and limitations
	Slide 26: hic draconis
	Slide 27: Unknown dangers are lurking

