Problem
Solving and -
Search —

Informatics 2D: Reasoning and Agents
Lecture 2

Adapted from slides provided by Dr Petros Papapanagiotou

Problem-solving
Agents

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
persistent: seqg, an action sequence, initially empty
state, some description of the currentworld state
goal, a goal, initially null

PrOb‘em_ problem,a problem formulation

state € UPDATE-STATE(state, percept)
X if seg is empty then do
SO |V| N g goal € FORMULATE-GOAL(state)
problem < FORMULATE-PROBLEM(state, goal)
d 9 e ﬂtS seq €< SEARCH(problem)
if seq = failure then return a null action
action € FIRST(seq)

seq € REST(seq)
returnaction

INF2D: REASONING AND AGENTS 3

118 [] Vaslui

Timisoara

Pitesti

] Hirsova

] Mehadia Urziceni

75 86

Dobreta []

Eforie

INF2D: REASONING AND AGENTS

—xample:
Romania

On holiday in Romania.
Currentlyin Arad.

Flight leaves tomorrow from
Bucharest.

—xample: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
o be in Bucharest

Formulate problem:
o states: various cities
o actions: drive between cities

Find solution:
o sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

INF2D: REASONING AND AGENTS 5

Problem types

Deterministic, fully observable = single-state problem
o Agent knows exactly which state it will be in; solution is a sequence

Non-observable = sensorless problem (conformant problem)
o Agent may have no idea where it is; solution is a sequence

Nondeterministic and/or partially observable = contingency problem

o percepts provide new information about current state
o often interleave search, execution

Unknown state space = exploration problem

INF2D: REASONING AND AGENTS 6

1 .J 2 .dﬂ — :
- ~ —xample:
vacuum world

Single-state:
Startin 5
Solution?

—xample:
vacuum world

Single-state:
Startin 5
Solution?

[Right, Suck]

Sensorless:
Startin{1,2,3,4,5,6,7 8}
e.g. Rightgoes to {2,4,6,8}
Solution?

g
5
3
'L

—xample:
vacuum world

3 ‘J 4 ‘dﬂ Single-state:
PR ofR RO
Startin 5
Solution?
[[Right, Suck]
5 | = 6 =]
B # Sensorless:
Startin{1,2,3,4,5,6,7 8}
r e.g. Rightgoes to {2,4,6,8}
? J E A Solution?
[Right, Suck, Left, Suck]

INF2D: REASONING AND AGENTS 9

g
5
3
'L

—xample:
vacuum world

Contingency:

o Nondeterministic: Suck may
dirty a clean carpet

o Partially observable: can
only see dirt at current
location.

o Percept: [Left, Clean]
l.e., startin5or 7
Solution?

e
gl

INF2D: REASONING AND AGENTS 10

g
5
3
'L

—xample:
vacuum world

Contingency:

o Nondeterministic: Suck may
dirty a clean carpet

o Partially observable: can
only see dirt at current
location.

o Percept: [Left, Clean]
l.e., startin5or 7

Solution?
[Right, if dirt then Suck]

e
gl

INF2D: REASONING AND AGENTS 11

Problem Formulation

Single-state problem formulation
m Initial State
® e.g."in Arad”
» Actions or Successor function
= set of action-state pairs
°e. g S Arad) = {<Arad = Zerind, Zerind>, .
(‘ Goal test
O e explicit e.g. x = "in Bucharest"
e implicit e.g. Checkmate(x)
Path cost (additive)
% ® e.g. sum of distances, number of actions executed, etc.
® c(x,a,y) is the step cost of taking action a in state x to reach state y, assumed to be = 0

INF2D: REASONING AND AGENTS 13

Single-state problem formulation

1

Initial State

® e.g."in Arad”

A solution is a sequence of actions leading from the initial state to a goal
state, i.e. a state that succeeds the goal test.

A
O e explicit e.g. x = "in Bucharest"

e implicit e.g. Checkmate(x)

Path cost (additive)
% ® e.g. sum of distances, number of actions executed, etc.

® c(x,a,y) is the step cost of taking action a in state x to reach state y, assumed to be = 0

INF2D: REASONING AND AGENTS 14

Selecting a state space

Real world is absurdly complex

- state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract)action = complex combination of real actions

> e.g., "Arad 2> Zerind" represents a complex set of possible routes, detours, rest stops,
etc.

o For guaranteed realizability, any real state "in Arad” must get to some real state "in
Zerind"

(Abstract)solution = set of real paths that are solutionsin the real world

Each abstract action should be "easier" than the original problem.

INF2D: REASONING AND AGENTS 15

—xample: Vacuum world

SIS N

S SER SIS

0 CEE
» EES
¢

% Path cost (additive)

—xample: Vacuum world

0%

e Pair of dirt and robotlocations

-~ CE

e [eft, Right, Suck

¢

* No dirt at any location

SIS N
-
S SER SIS

% Path cost (additive)

® | per action

INF2D: REASONING AND AGENTS 17

—xample:
FLT - Vacuum world

il

= States

R R
L =) =) R L |=d) " =) R * Pair of dirtand robot locations
o8 | FR 7R R
S

S (g_) m Actions

e [eft, Right, Suck

L L =D e

LS_) e No dirt atany location

m Path cost (additive)

7]
w

* 1 peraction

INF2D: REASONING AND AGENTS 18

—xample: 8-puzzle

1

4

7

Goal State

0
~
¢ I

% Path cost (additive)

—xample: 8-puzzle

N

* Integer location of tiles

» EE

® Move blank left, right, up, down

8] 3 |f 1 6 || 7 || 8 () Goal test

Start State Goal State e = Goal state(given)

% Path cost (additive)

* 1 per move

5 6 3 4 5

INF2D: REASONING AND AGENTS 20

—xample: 8-puzzle

N

* Integer location of tiles

» EE

® Move blank left, right, up, down

8] 3 |f 1 6 || 7 || 8 () Goal test

Start State Goal State e = Goal state(given)

% Path cost (additive)

* 1 per move

5 6 3 4 5

INF2D: REASONING AND AGENTS

—xample: Robotic assembly

mm

P ® Real-valued coordinates of robot joint angles
* Parts of the object to be assembled

o e Continuous motions of robot joints
(@) Goal test

* = complete assembly

% Path cost (additive)

* Time to execute

INF2D: REASONING AND AGENTS 22

Searching tor
Solutions

Tree search algorithms

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution

expand the chosen node, adding the resulting nodes to the frontier

INF2D: REASONING AND AGENTS 24

Tree search example

.--"'--- M, ---"'--.
.--"_--- N, -..-"--.
e , e
—— A T

Tree search example

I'|I

Rimnicu
Vilcea

Tree search example

INF2D: REASONING AND AGENTS 27

Implementation:
states vs. nodes

PARENT A state is a (representation of) a physical

configuration

s M 4 Node ACTION = Right
PATH-COST = 6 A node is a book-keeping data structure
constituting part of a searchtree; includes

state, parent node, action, path cost

STATE

Using these it is easy to compute the
components for a child node.
(The Crrp-NopE function)

INF2D: REASONING AND AGENTS 28

Implementation: general tree search

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontieris empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function CHILD-NODE(problem, parent, action) returns a node
return a node with
STATE = problem.RESULT(parent.STATE, action),
PARENT = parent, ACTION = action,
PATH-COST = parent.PATH-COST + problem.STEP-COST(parent.STATE, action)

INF2D: REASONING AND AGENTS 29

Summary

Problem formulation usually requires abstracting away real-world
details to define a state space that can feasibly be explored.

INF2D: REASONING AND AGENTS 30

Why?

Formulating problems in a way that a computer can understand.

o

o

Breaking down the problem and its parameters.

o

Clarifying the possible actions and assumptions about them.

(o]

Creating structures where we can methodically and systematically search for solutions.

INF2D: REASONING AND AGENTS 31

