Search —]
Strategies o 2z

Informatics 2D: Reasoning and Agents
Lecture 3

Adapted from slides provided by Dr Petros Papapanagiotou

Search strategies

A search strategy is defined by picking the order of node expansion.
> Nodes are taken from the frontier.

INF2D: REASONING AND AGENTS 2

—valuating search strategies

¥ completeness: does it always Time and space complexity are
v

=] find a solutionif one exists" measured in terms of:

o b: maximum branchingfactor of the
search tree

time complexity: number of
nodes generated/ expanded

o d: depth of the least-cost solution

:‘: space complexity: maximum > m: maximum depth of the state
¥ numberof nodesin memory space (may be)

% optimality: does it always

find a least-cost solution?

INF2D: REASONING AND AGENTS 3

function TREE-SEARCH(problem) returns a solution, or failure

?e Ca ‘ ‘ : Tre e initialize the frontier using the initial state of problem

loop do

S e a rC h if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

Rimnicu
Vilcea

INF2D: REASONING AND AGENTS A

Repeateao
states

A

B Failureto detect repeated
states can turn a linear

c problem into an exponential

onel

INF2D: REASONING AND AGENTS

Graph

function GRAPH-SEARCH(problem) returns a solution, or failure | S e a rC h

initialize the frontier using the initial state of problem
initialize the explored set to be empty
loop do Augment TREE-SEARCH with a new
if the frontier is empty then return failure data-structure:
choose a leaf node and remove it from the frontier e the explored set (closed
if the node contains a goal state then return the corresponding solution list), which remembers every
add the node to the explored set expanded node
expand the chosen node, adding the resulting nodes to the frontier
only if not in the frontier or explored set * newly expanded nodes

already in explored set are

discarded

INF2D: REASONING AND AGENTS 6

Breadth-first search

Breadth-first Out ¢

search

Expand shallowest @

unexpanded node

Implementation:

o frontier is a FIFO queue,
i.e., new successors go at

end

INF2D: REASONING AND AGENTS 8

Breadth-first Out ¢

search

Expand shallowest °

unexpanded node

Implementation: be °

o frontier is a FIFO queue,
i.e., new successors go at

>
w
@)

end

INF2D: REASONING AND AGENTS 9

Breadth-first
search

Expand shallowest
unexpanded node

Implementation:

o frontier is a FIFO queue,
i.e., new successors go at

end

INF2D: REASONING AND AGENTS

Out

¢ .=

Breadth-first Out ¢

search

Expand shallowest °

unexpanded node

(@)
O
M
T
B

Implementation:

o frontier is a FIFO queue, °

l.e., new successors go at

~ONONO

INF2D: REASONING AND AGENTS

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node «— a node with STATE = problem INITIAL-STATE, PATH-COST =0
if problem .GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier < a FIFO queue with node as the only element
explored «+— an empty set
loop do
if EMPTY?(frontier) then return failure
node < POP(frontier) /[* chooses the shallowest node in frontier */
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child < CHILD-NODE(problem, node, action)
if child .STATE is not in explored or frontier then
if problem .GOAL-TEST(child.STATE) then return SOLUTION(child)
frontier < INSERT(child, frontier)

Breadth-
first
search
algorithm

INF2D: REASONING AND AGENTS

Properties of breadth-first search

V_ Complete?

Time complexity?

Space complexity?

Optimal?

Properties of breadth-first search

V_ Complete?
= Yes (if b is finite)

Time complexity?

Space complexity?

Optimal?

Properties of breadth-first search

Complete?
Yes (if b is finite)

Time complexity?
b+b2+b3+... +b9 = O(bY) (worst-case)

Space complexity?

INF2D: REASONING AND AGENTS

Optimal?

Properties of breadth-first search

Complete?
Yes (if b is finite)

Time complexity?
b+b2+b3+... +b9 = O(b9) (worst-case)

Space complexity?
O(b?) (keeps every node in memory)

INF2D: REASONING AND AGENTS

Optimal?

Properties of breadth-first search

Complete?
Yes (if b is finite)

Time complexity?
b+b2+b3+... +b9 = O(b9) (worst-case)

Space complexity?
O(b?) (keeps every node in memory)

INF2D: REASONING AND AGENTS

Optimal?
Yes (if cost = 1 per step)

Properties of breadth-first search

V_ Complete?
= Yes (if b is finite)

@ Time complexity?
b+b2+b3+... +b9 = O(b9) (worst-case)

Space complexity?
O(b?) (keeps every node in memory)

% Optimal?
Yes (if cost = 1 per step) o () renopumel

to start!

INF2D: REASONING AND AGENTS

Properties of breadth-first search

Complete?
Yes (if b is finite)

Time complexity?
b+b2+b3+... +b9 = O(b9) (worst-case)

Space complexity?
O(b?) (keeps every node in memory)

INF2D: REASONING AND AGENTS

Optimal?
Yes (if cost = 1 per step)

Space is the bigger problem (more than time)

Depth Nodes Time Memory
2 110 .11 milliseconds 107 kilobytes
4 11,110 11 milliseconds 10.6 megabytes
6 106 1.1 seconds 1 gigabyte
8 108 2 minutes 103 gigabytes
10 1010 3 hours 10 terabytes
12 1012 13 days 1 petabyte
14 10t 3.5 years 99 petabytes
16 1016 350 years 10 exabytes
Figure 3.13 Time and memory requirements for breadth-first search. The numbers shown
assume branching factor b = 10; 1 million nodes/second; 1000 bytes/node.

INF2D: REASONING AND AGENTS

20

Depth-first search

Out

Depth-first
search

Expand deepest @

unexpanded node

Implementation:

o frontier is a LIFO queue,
i.e., new successors go at

front

INF2D: REASONING AND AGENTS 22

Out

Depth-first
search

Expand deepest °

unexpanded node

Implementation: be °

o frontier is a LIFO queue,
i.e., new successors go at

front

INF2D: REASONING AND AGENTS 23

Out

Depth-first
search

Expand deepest
unexpanded node

Implementation:

o frontier is a LIFO queue,
i.e., new successors go at

front

24

INF2D: REASONING AND AGENTS

Out

Depth-first
search

Expand deepest
unexpanded node

Implementation:

o frontier is a LIFO queue,
i.e., new successors go at

front

25

INF2D: REASONING AND AGENTS

Out

Depth-first
search

- =
-
O

Expand deepest
unexpanded node

Implementation:

o frontier is a LIFO queue,
i.e., new successors go at

front

26

INF2D: REASONING AND AGENTS

ol

Out

Depth-first
search

Expand deepest °

unexpanded node

Implementation: ° °

o frontier is a LIFO queue,

i.e., new successors go at
front o »e

|
m
O

27

INF2D: REASONING AND AGENTS

ol

Out

Depth-first
search

Expand deepest o

unexpanded node

Implementation: ° °

o frontier is a LIFO queue,

i.e., new successors go at
front o °

28

INF2D: REASONING AND AGENTS

Out

Depth-first
search

|
/N
O

Expand deepest
unexpanded node

Implementation:

o frontier is a LIFO queue,
i.e., new successors go at

front

29

INF2D: REASONING AND AGENTS

ol

Out

Depth-first
search

Expand deepest .

unexpanded node

Implementation: ° »a

o frontier is a LIFO queue,

i.e., new successors go at
front o e

e
@)

30

INF2D: REASONING AND AGENTS

Out

Depth-first
search

Expand deepest .

unexpanded node

Implementation: ° °

o frontier is a LIFO queue,

l.e., new successors go at
o o e I a °

31

INF2D: REASONING AND AGENTS

Properties of depth-first search

V_ Complete?

Time complexity?

Space complexity?

Optimal?

Properties of depth-first search

Complete?
No: fails in infinite-depth spaces, spaces with loops

Time complexity?

Space complexity?

INF2D: REASONING AND AGENTS

Optimal?

88

Properties of depth-first search

= Complete?
= No: fails in infinite-depth spaces, spaces with loops
© Y
. . 0 Y
Time com plQXltY? avoid repeated
states along path;
completeinfinite
\ spaces

Space complexity?

Optimal?

INF2D: REASONING AND AGENTS 34

Properties of depth-first search

Complete?
No: fails in infinite-depth spaces, spaces with loops

Time complexity?
O(b™): terrible it m is much larger than d

Space complexity?

INF2D: REASONING AND AGENTS

Optimal?

35

Properties of depth-first search

v_ Complete?
= No: fails in infinite-depth spaces, spaces with loops

Time complexity?
O(b™): terrible it m is much larger than d

. 30 ~ ‘
Space COmpleX|tY? Ifsolutions/—arr—i
dense, depth-first
\ than breadth-first! .
Optimal?

INF2D: REASONING AND AGENTS 36

Properties of depth-first search

Complete?
No: fails in infinite-depth spaces, spaces with loops

Time complexity?
O(b™): terrible it m is much larger than d

Space complexity?
O(bm), i.e., linear space!

INF2D: REASONING AND AGENTS

Optimal?

37

Properties of depth-first search

Complete?
No: fails in infinite-depth spaces, spaces with loops

Time complexity?
O(b™): terrible it m is much larger than d

Space complexity?
O(bm), i.e., linear space!

INF2D: REASONING AND AGENTS

Optimal?
No

38

Mid-Lecture Exercise

BREADTH-FIRST DEPTH-FIRST

Mid-Lecture Exercise

BREADTH-FIRST DEPTH-FIRST

> When completenessis important. o When solutions are dense and low-cost
> When optimal solutions are important. is important, especially space costs.

INF2D: REASONING AND AGENTS 40

function DEPTH-LIMITED-SEARCH(problem, limit) returns a solution, or failure/cutoff D e pt h - ‘ I I ' l I t e d

return RECURSIVE-DLS(MAKE-NODE(problem INITIAL-STATE), problem, limit)

function RECURSIVE-DLS (node, problem, limit) returns a solution, or failure/cutoff S e a rC h
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
else if /imit = 0 then return cutoff
else
cutoffoccurred? — false This is depth-first search with
for each action in problem.ACTIONS(node.STATE) do .. .
child + CHILD-NODE(problem, node, action) depth limit |, l.e., nodes at
result «— RECURSIVE-DLS(child, problem, limit — 1) depth | have no successors

if result = cutoff then cutoff_occurred? «— true
else if result # failure then return result
if cutoff_occurred? then return cutoff else return failure

INF2D: REASONING AND AGENTS 41

Properties of depth-limited tree search

V_ Complete?
v= No

Time complexity?
O(b')

Space complexity?
O(bl), i.e., linear space!

Optimal?
No

terative deepening
search

...or how to improve depth-first search

terative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure
for depth =0 to oo do
result «— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

INF2D: REASONING AND AGENTS A

terative deepening search [=0

) O

terative deepening search |

T A o e

terative deepening search [=2

o
sy O & O
1)
O ® o O
ofho ofho ofho
oflo oL’ e e oflo
03 ofolefole) »ao FOBO).
® ® O
ofl s ofho ofho
offo ool oR0 ofloNoR0
oooo oooo oooe»ao TOGORD
o
ofho
o e o»a o e o oWNG e e ® o

O
0]0]0]0]0]0 000000>9°0000000\>30

terative deepening search

Number of nodes generated in an iterative deepening search to
depth d with branching factor b:

N/DS = (d)b +(d-7) b2 + ... T (Z)bd_1 + (7)bd

Some cost associated with generating upper levels multiple times

Example: Forb =10,d = 5,
> Nggs= 10+ 100+ 1,000 + 10,000 + 100,000= 111,110
o Nips = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

Overhead =(123,450-111,110)/111,110 = 11%

INF2D: REASONING AND AGENTS 49

Properties of iterative deepening search

V_ Complete?

Time complexity?

Space complexity?

Optimal?

Properties of iterative deepening search

V_ Complete?
= Yes

Time complexity?

Space complexity?

Optimal?

Properties of iterative deepening search

V_ Complete?
= Yes

Time complexity?
(d)b + (d-1)b2 + ... + (1)b9 = O(b)

Space complexity?

Optimal?

Properties of iterative deepening search

V_ Complete?
= Yes

Time complexity?
(d)b + (d-1)b2 + ... + (1)b9 = O(b)

Space complexity?
O(bd)

Optimal?

Properties of iterative deepening search

V_ Complete?
= Yes

@ Time complexity?
(d)b + (d-1)b2 + ... + (1)b9 = O(b)

Space complexity?
O(bd)

% Optimal?
Yes, if step cost = 1

Criterion Breadth- Uniform- Depth- Depth- [terative Bidirectional
First Cost First Limited Deepening | (if applicable)
Complete? Yes“ Yes®? No No Yes“ Yes®4
Time O(b?) oL /ey om™) O(b") O(b?) O(b%/?)
Space O(b?) oM+ /<yl O(m) O®L) O(bd) O(b%/?)
Optimal? Yes© Yes No No Yes© Yesd

Summary of algorithms

INF2D: REASONING AND AGENTS 55

Summary

Variety of uninformed search strategies:
o breadth-first, depth-first, depth-limited, iterative deepening

lterative deepening search uses only linear space and
not much more time than other uninformed
algorithms

INF2D: REASONING AND AGENTS 56

Why?

> Very common algorithmes.

o Used whenever we are looking for a path in a tree or graph.

o Anywhere from games to programming languages.

o Properties matter!

o time and/or space complexity.

o Understanding which algorithm to use in what circumstances.

INF2D: REASONING AND AGENTS 57

