Informatics 2D: Reasoning and Agents

Alex Lascarides

o School of _e
informatics

nive

S Q
< S,
2 e
" *
° =
B\ ©

o @
Orne

Lecture 17a: Forward State-Space Search in Planning

Alex Lascarides Informatics 2D

1/11



Where are we?

So far ...
o we defined the planning problem
o discussed problem with using search and logic in planning
@ introduced representation languages for planning
o looked at blocks world example
Over next few slots ...
o State-space search and partial-order planning

o Now: state-space search

Alex Lascarides Informatics 2D 2/11



Forward state-space search

Planning with state-space search Backward state-space search
Heuristics for state-space search

Planning with state-space search

@ Most straightforward way to think of planning process:
search the space of states using action schemata
@ Since actions are defined both in terms of preconditions and
effects we can search in both directions
o Two methods:
© forward state-space search: Start in initial state; consider
action sequences until goal state is reached.

@ backward state-space search: Start from goal state; consider
action sequences until initial state is reached

Alex Lascarides Informatics 2D 3/11



Forward state-space search
Planning with state-space search Backward state-space search
Heuristics for state-space search

Planning with state-space search

Fly(P;, A, B)
Fly(P,, A, B)

Alex Lascarides Informatics 2D

4/11



Forward state-space search
Planning with state-space search Backward state-space search
Heuristics for state-space search

Forward state-space search

@ Also called progression planning
o Formulation of planning problem:

o Initial state of search is initial state of planning problem

(=set of positive literals)

Applicable actions are those whose preconditions are satisfied

Single successor function works for all planning problems

(consequence of action representation)

o Goal test = checking whether state satisfies goal of planning
problem

o Step cost usually 1, but different costs can be allowed

Alex Lascarides Informatics 2D 5/11



Forward state-space search
Planning with state-space search Backward state-space search
Heuristics for state-space search

Forward state-space search

@ Search space is finite in the absence of function symbols

@ Any complete graph search algorithm (like A*) will be a
complete graph planning algorithm

e Forward search does not solve problem of irrelevant actions (all
actions considered from each state)

o Efficiency depends largely on quality of heuristics
o Example:
o Air cargo problem, 10 airports with 5 planes each, 20 pieces of
cargo
o Task: move all 20 pieces of cargo at airport A to airport B
o Each of 50 planes can fly to 9 airports, each of 200 packages
can be unloaded or loaded (individually)
o So approximately 10K executable actions in each state
(50 x 9 x 200)
o Lots of irrelevant actions get considered, although solution is
trivial!

Alex Lascarides Informatics 2D 6/11



Forward state-space search
Planning with state-space search Backward state-space search
Heuristics for state-space search

Backward state-space search

@ In normal search, backward approach hard because goal
described by a set of constraints (rather than being listed
explicitly)

o Problem of how to generate predecessors, but planning
representations allow us to consider only relevant actions

@ Exclusion of irrelevant actions decreases branching factor

@ In example, only about 20 actions working backward from goal

o Regression planning = computing the states from which
applying a given action leads to the goal

@ Must ensure that actions are consistent, i.e. they don't undo
any desired literals

Alex Lascarides Informatics 2D 7/11



Forward state-space search
Planning with state-space search Backward state-space search
Heuristics for state-space search

Air cargo domain example

o Goal can be described as
At(C1,B)NAt(Cy, B) A ... At(Coo, B)

o To achieve At(Cy,B) there is only one action,
Unload(Cy,p, B) (p unspecified)

o Can do this action only if its preconditions are satisfied.

@ So the predecessor to the goal state must include
In(Cy, p) A At(p, B), and should not include At(Cy,B)
(otherwise irrelevant action)

o Full predecessor:
In(Cl,p) /\At(p, B) A... /\At’(Cgo7 B)

@ Load(Cy,p) would be inconsistent (negates At(Cy, B))

Alex Lascarides Informatics 2D

8/11



Forward state-space search
Planning with state-space search Backward state-space search
Heuristics for state-space search

Backward state-space search

@ General process of constructing predecessors for backward
search given goal description G, relevant and consistent action

o Any positive effects of A that appear in G are deleted
o Each precondition of A is added unless it already appears

@ Any standard search algorithm can be used, terminates when
predecessor description is satisfied by initial (planing) state

o First-order case may require additional substitutions which
must be applied to actions leading from state to goal

Alex Lascarides Informatics 2D 9/11



Forward state-space search
Planning with state-space search Backward state-space search
Heuristics for state-space search

Heuristics for state-space search

o Two possibilities:

@ Divide and Conquer (subgoal decomposition)
@ Derive a Relaxed Problem

@ Subgoal decomposition is ...

o optimistic (admissible) if negative interactions exist
(e.g. subplan deletes goal achieved by other subplan)
o pessimistic (inadmissible) if positive interactions exist
(e.g. subplans contain redundant actions)
o Relaxations:

o drop all preconditions (all actions always applicable, combined
with subgoal independence makes prediction even easier)

o remove all negative effects (and count minimum number of
actions so that union satisfies goals)

o empty delete lists approach (involves running a simple planning
problem to compute heuristic value)

Alex Lascarides Informatics 2D 10/11



Forward state-space search
Planning with state-space search Backward state-space search
Heuristics for state-space search

Summary

o State-space search approaches (forward/backward)
@ Heuristics for state-space search planning
Next time. ..

o Partial-order planning

Alex Lascarides Informatics 2D

11/11



	Planning with state-space search
	Forward state-space search
	Backward state-space search
	Heuristics for state-space search


