
Planning with state-space search

Informatics 2D: Reasoning and Agents

Alex Lascarides

T
H

E
U N I V E R

S
I

T
Y

O
F

E
D I N B U

R
G

H

Lecture 17a: Forward State-Space Search in Planning

Alex Lascarides Informatics 2D 1 / 11



Planning with state-space search

Where are we?

So far . . .
we defined the planning problem
discussed problem with using search and logic in planning
introduced representation languages for planning
looked at blocks world example

Over next few slots . . .
State-space search and partial-order planning
Now: state-space search

Alex Lascarides Informatics 2D 2 / 11



Planning with state-space search
Forward state-space search
Backward state-space search
Heuristics for state-space search

Planning with state-space search

Most straightforward way to think of planning process:
search the space of states using action schemata
Since actions are defined both in terms of preconditions and
effects we can search in both directions
Two methods:

1 forward state-space search: Start in initial state; consider
action sequences until goal state is reached.

2 backward state-space search: Start from goal state; consider
action sequences until initial state is reached

Alex Lascarides Informatics 2D 3 / 11



Planning with state-space search
Forward state-space search
Backward state-space search
Heuristics for state-space search

Planning with state-space search

Alex Lascarides Informatics 2D 4 / 11



Planning with state-space search
Forward state-space search
Backward state-space search
Heuristics for state-space search

Forward state-space search

Also called progression planning
Formulation of planning problem:

Initial state of search is initial state of planning problem
(=set of positive literals)
Applicable actions are those whose preconditions are satisfied
Single successor function works for all planning problems
(consequence of action representation)
Goal test = checking whether state satisfies goal of planning
problem
Step cost usually 1, but different costs can be allowed

Alex Lascarides Informatics 2D 5 / 11



Planning with state-space search
Forward state-space search
Backward state-space search
Heuristics for state-space search

Forward state-space search

Search space is finite in the absence of function symbols
Any complete graph search algorithm (like A∗) will be a
complete graph planning algorithm
Forward search does not solve problem of irrelevant actions (all
actions considered from each state)
Efficiency depends largely on quality of heuristics
Example:

Air cargo problem, 10 airports with 5 planes each, 20 pieces of
cargo
Task: move all 20 pieces of cargo at airport A to airport B
Each of 50 planes can fly to 9 airports, each of 200 packages
can be unloaded or loaded (individually)
So approximately 10K executable actions in each state
(50×9×200)
Lots of irrelevant actions get considered, although solution is
trivial!

Alex Lascarides Informatics 2D 6 / 11



Planning with state-space search
Forward state-space search
Backward state-space search
Heuristics for state-space search

Backward state-space search

In normal search, backward approach hard because goal
described by a set of constraints (rather than being listed
explicitly)
Problem of how to generate predecessors, but planning
representations allow us to consider only relevant actions
Exclusion of irrelevant actions decreases branching factor
In example, only about 20 actions working backward from goal
Regression planning = computing the states from which
applying a given action leads to the goal
Must ensure that actions are consistent, i.e. they don’t undo
any desired literals

Alex Lascarides Informatics 2D 7 / 11



Planning with state-space search
Forward state-space search
Backward state-space search
Heuristics for state-space search

Air cargo domain example

Goal can be described as

At(C1,B)∧At(C2,B)∧ . . .At(C20,B)

To achieve At(C1,B) there is only one action,
Unload(C1,p,B) (p unspecified)
Can do this action only if its preconditions are satisfied.
So the predecessor to the goal state must include
In(C1,p)∧At(p,B), and should not include At(C1,B)
(otherwise irrelevant action)
Full predecessor:

In(C1,p)∧At(p,B)∧ . . .∧At(C20,B)

Load(C1,p) would be inconsistent (negates At(C1,B))
Alex Lascarides Informatics 2D 8 / 11



Planning with state-space search
Forward state-space search
Backward state-space search
Heuristics for state-space search

Backward state-space search

General process of constructing predecessors for backward
search given goal description G , relevant and consistent action
A:

Any positive effects of A that appear in G are deleted
Each precondition of A is added unless it already appears

Any standard search algorithm can be used, terminates when
predecessor description is satisfied by initial (planing) state
First-order case may require additional substitutions which
must be applied to actions leading from state to goal

Alex Lascarides Informatics 2D 9 / 11



Planning with state-space search
Forward state-space search
Backward state-space search
Heuristics for state-space search

Heuristics for state-space search

Two possibilities:
1 Divide and Conquer (subgoal decomposition)
2 Derive a Relaxed Problem

Subgoal decomposition is . . .
optimistic (admissible) if negative interactions exist
(e.g. subplan deletes goal achieved by other subplan)
pessimistic (inadmissible) if positive interactions exist
(e.g. subplans contain redundant actions)

Relaxations:
drop all preconditions (all actions always applicable, combined
with subgoal independence makes prediction even easier)
remove all negative effects (and count minimum number of
actions so that union satisfies goals)
empty delete lists approach (involves running a simple planning
problem to compute heuristic value)

Alex Lascarides Informatics 2D 10 / 11



Planning with state-space search
Forward state-space search
Backward state-space search
Heuristics for state-space search

Summary

State-space search approaches (forward/backward)
Heuristics for state-space search planning

Next time. . .
Partial-order planning

Alex Lascarides Informatics 2D 11 / 11


	Planning with state-space search
	Forward state-space search
	Backward state-space search
	Heuristics for state-space search


