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Lecture 17b: Partial Order Planning

Alex Lascarides Informatics 2D 1 / 15



Partial-order planning
Summary

Where are we?

Last time. . .
Planning using state-space search (forward/backward)

Now:
Partial-order Planning
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Partial-order planning

State-space search planning algorithms consider totally
ordered sequences of actions
Better not to commit ourselves to complete chronological
ordering of tasks (least commitment strategy)
Basic idea:

1 Add actions to a plan without specifying which comes first
unless necessary

2 Combine ‘independent’ subsequences afterwards

Partial-order solution will correspond to one or several
linearisations of partial-order plan
Search in plan space rather than state spaces (because your
search is over ordering constraints on actions, as well as
transitions among states).
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Example: Put your socks and shoes on

Alex Lascarides Informatics 2D 4 / 15



Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning (POP) as a search problem

Define POP as search problem over plans consisting of:
Actions; initial plan contains dummy actions Start (no
preconditions, effect=initial state) and Finish (no effects,
precondition=goal literals)
Ordering constraints on actions A≺ B (A must occur before
B); contradictory constraints prohibited

Causal links between actions A
p→ B express A achieves p for

B (p precondition of B , effect of A, must remain true between
A and B); inserting action C with effect ¬p (A≺ C and
C ≺ B) would lead to conflict
Open preconditions: set of conditions not yet achieved by
the plan (planners try to make open precondition set empty
without introducing contradictions)
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The POP algorithm

Final plan for socks and shoes example (without trivial
ordering constraints):
Actions: {RightSock,RightShoe,LeftSock,LeftShoe,Start,Finish}
Orderings: {RightSock ≺ RightShoe,LeftSock ≺ LeftShoe}
Links: {RightSock RightSockOn→ RightShoe,

LeftSock
LeftSockOn→ LeftShoe,

RightShoe
RightShoeOn→ Finish,

LeftShoe
LeftShoeOn→ Finish}

Open preconditions: {}
Consistent plan = plan without cycles in orderings and
conflicts with links
Solution = consistent plan without open preconditions
Every linearisation of a partial-order solution is a total-order
solution (implications for execution!)
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The POP algorithm

Initial plan:
Actions: {Start,Finish}, Orderings: {Start ≺ Finish},
Links: {}, Open preconditions: Preconditions of Finish

Pick p from open preconditions on some action B , generate a
consistent successor plan for every A that achieves p
Ensuring consistency:

1 Add A
p→ B and A≺ B to plan. If A new, add A and Start ≺ A

and A≺ Finish to plan
2 Resolve conflicts between the new link and all actions and

between A (if new) and all links as follows:
If conflict between A

p→ B and C , add B ≺ C or C ≺ A

Goal test: check whether there are open preconditions
(only consistent plans are generated)
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Partial-order planning example (1)

Init(At(Flat,Axle)∧At(Spare,Trunk)). Goal(At(Spare,Axle)).

Action(Remove(Spare,Trunk),

Precond:At(Spare,Trunk)
Effect:¬At(Spare,Trunk)∧At(Spare,Ground))

Action(Remove(Flat,Axle),

Precond:At(Flat,Axle)
Effect:¬At(Flat,Axle)∧At(Flat,Ground))

Action(PutOn(Spare,Axle),

Precond:At(Spare,Ground)∧¬At(Flat,Axle)
Effect:¬At(Spare,Ground)∧At(Spare,Axle))

Action(LeaveOvernight, Precond:
Effect:¬At(Spare,Ground)∧¬At(Spare,Axle)∧¬At(Spare,Trunk)

∧¬At(Flat,Ground)∧¬At(Flat,Axle))
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Partial-order planning example (2)

Pick (only) open precondition At(Spare,Axle) of Finish
Only applicable action = PutOn(Spare,Axle)

Pick At(Spare,Ground) from PutOn(Spare,Axle)
Only applicable action = Remove(Spare,Trunk)

Situation after two steps:
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Partial-order planning example (3)

Pick ¬At(Flat,Axle) precondition of PutOn(Spare,Axle)
Choose LeaveOvernight, effect ¬At(Spare,Ground)
Conflict with link
Remove(Spare,Trunk)

At(Spare,Ground)→ PutOn(Spare,Axle)

Resolve by adding LeaveOvernight ≺ Remove(Spare,Trunk)
Why is this the only solution?
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Partial-order planning example (4)

Remaining open precondition At(Spare,Trunk), but conflict
between Start and ¬At(Spare,Trunk) effect of
LeaveOvernight

No ordering before Start possible or after
Remove(Spare,Trunk) possible
No successor state, backtrack to previous state and remove
LeaveOvernight, resulting in this situation:
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Partial-order planning example (5)

Now choose Remove(Flat,Axle) instead of LeaveOvernight
Next, choose At(Spark ,Trunk) precondition of
Remove(Spare,Trunk)
Choose Start to achieve this
Pick At(Flat,Axle) precondition of Remove(Flat,Axle),
choose Start to achieve it
Final, complete, consistent plan:
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Dealing with unbound variables

In first-order case, unbound variables may occur during
planning process
Example:

Action(Move(b,x ,y),

Precond:On(b,x)∧Clear(b)∧Clear(y)
Effect:On(b,y)∧Clear(x)∧¬On(b,x)∧¬Clear(y))

achieves On(A,B) under substitution {b/A,y/B}
Applying this substitution yields

Action(Move(A,x ,B),

Precond:On(A,x)∧Clear(A)∧Clear(B)
Effect:On(A,B)∧Clear(x)∧¬On(A,x)∧¬Clear(B))

and x is still unbound (another side of the least commitment
approach)
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Dealing with unbound variables

Also has an effect on links, e.g. in example above

Move(A,x ,B)
On(A,B)→ Finish would be added

If another action has effect ¬On(A,z) then this is only a
conflict if z = B

Solution: insert inequality constraints (in example: z 6= B)
and check these constraints whenever applying substitutions
Remark on heuristics: Even harder than in total-order planning,
e.g. adapt most-constrained-variable approach from CSPs
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Partial-order planning
The POP algorithms
POP as search in planning space
POP example
POP with unbound variables
Next time: Planning and Acting in the Real World
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