Informatics 2D: Reasoning and Agents

Alex Lascarides

o School of _e
informatics

nive

S Q
< S,
2 e
" *
° =
B\ ©

o @
Orne

Lecture 17b: Partial Order Planning

Alex Lascarides Informatics 2D 1/15

Where are we?

Last time. ..
@ Planning using state-space search (forward/backward)
Now:

e Partial-order Planning

Alex Lascarides Informatics 2D 2/15

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Partial-order planning

o State-space search planning algorithms consider totally
ordered sequences of actions

@ Better not to commit ourselves to complete chronological
ordering of tasks (least commitment strategy)
e Basic idea:
@ Add actions to a plan without specifying which comes first
unless necessary
@ Combine ‘independent’ subsequences afterwards
@ Partial-order solution will correspond to one or several
linearisations of partial-order plan

@ Search in plan space rather than state spaces (because your
search is over ordering constraints on actions, as well as
transitions among states).

Alex Lascarides Informatics 2D 3/15

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Example: Put your socks and shoes on

Partial-Order Plan: Total-Order Plans:

W | Start ‘ Start | | Start | | Start

t i f 1 1 !

Start

|S'ar||

Right Right Left Left Right Left
Sock Sock Sock Sock Sock Sock
Left Right
1 i i f {
Left Left Right Right Right Left
Sock Sock Sock Sock Shoe Shoe
LeftSockOn RightSockOn + ‘
: Right Left Right Left Left Right
Left Right
Left Right Left Right Left Right
Shoe Shoe Shoe Shoe Shoe Shoe
LeftShoeOn, RightShoeOn + + + ‘ * ‘.
| Finish‘ ‘ Finish Finish Finish Finish Finish

Alex Lascarides Informatics 2D 4/15

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Partial-order planning (POP) as a search problem

Define POP as search problem over plans consisting of:

e Actions; initial plan contains dummy actions Start (no
preconditions, effect=initial state) and Finish (no effects,
precondition=goal literals)

o Ordering constraints on actions A < B (A must occur before
B); contradictory constraints prohibited

o Causal links between actions A2 B express A achieves p for
B (p precondition of B, effect of A, must remain true between
A and B); inserting action C with effect —-p (A< C and
C < B) would lead to conflict

o Open preconditions: set of conditions not yet achieved by
the plan (planners try to make open precondition set empty
without introducing contradictions)

Alex Lascarides Informatics 2D 5/15

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

The POP algorithm

e Final plan for socks and shoes example (without trivial

ordering constraints):
Actions: {RightSock, RightShoe, LeftSock, LeftShoe, Start, Finish}
Orderings: {RightSock < RightShoe, LeftSock < LeftShoe}

Links: {RightSock Right5gckOn RightShoe,
LeftSock LeftSOCkon LeftShoe,
RightShoe nghtShonn Finish,

LeftShoe LeftShoeon Finish}
Open preconditions: {}

e Consistent plan = plan without cycles in orderings and
conflicts with links

@ Solution = consistent plan without open preconditions

o Every linearisation of a partial-order solution is a total-order
solution (implications for execution!)

Alex Lascarides Informatics 2D 6/15

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

The POP algorithm

o Initial plan:
Actions: {Start, Finish}, Orderings: {Start < Finish},

Links: {}, Open preconditions: Preconditions of Finish

@ Pick p from open preconditions on some action B, generate a
consistent successor plan for every A that achieves p
@ Ensuring consistency:
O Add AL Band A<Bto plan. If A new, add A and Start < A
and A < Finish to plan

@ Resolve conflicts between the new link and all actions and
between A (if new) and all links as follows:

If conflict between A2 B and C, add B<Cor C < A

o Goal test: check whether there are open preconditions
(only consistent plans are generated)

Alex Lascarides Informatics 2D 7/15

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Partial-order planning example (1)

Init(At(Flat, Axle) A At(Spare, Trunk)). Goal(At(Spare, Axle)).
Action(Remove(Spare, Trunk),

Precond:At(Spare, Trunk)

Effect:—At(Spare, Trunk) A At(Spare, Ground))
Action(Remove(Flat, Axle),

Precond: At(Flat, Axle)

Effect:~At(Flat, Axle) A At(Flat, Ground))
Action(PutOn(Spare, Axle),

Precond:At(Spare, Ground) A —At(Flat, Axle)

Effect:—At(Spare, Ground) A At(Spare, Axle))
Action(LeaveOvernight, Precond:

Effect:—At(Spare, Ground) A —At(Spare, Axle) N ~At(Spare, Trunk)

A -At(Flat, Ground) A —At(Flat, Axle))

Alex Lascarides Informatics 2D 8/15

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Partial-order planning example (2)

@ Pick (only) open precondition At(Spare, Axle) of Finish
Only applicable action = PutOn(Spare, Axle)

o Pick At(Spare, Ground) from PutOn(Spare, Axle)
Only applicable action = Remove(Spare, Trunk)

@ Situation after two steps:

Af Spare, Trunk)| Remove(Spare,Trunk)
At(Spare, Trunk) At Spare,Groun
Al‘(FfarAxfe) o “[Futon(Spare Axie) J-#=AtlSeare.Axa_Finish_]

—Af{ Flat Axle)

Alex Lascarides Informatics 2D 9/15

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Partial-order planning example (3)

o Pick —At(Flat,Axle) precondition of PutOn(Spare, Axle)
Choose LeaveOvernight, effect —=At(Spare, Ground)

o Conflict with link

At(Spare,Ground
Remove(Spare, Trunk) (Spare)

PutOn(Spare, Axle)

@ Resolve by adding LeaveOvernight < Remove(Spare, Trunk)
Why is this the only solution?

Af{Spare. Trunk)| Remove(Spare, Trunk)
!
At{Spare, Trunk) At(Spare, Ground)
Start ! PutOn(Spare,Axle At Spare. Axl
AI(FfarAx/e} U —Al{Flat.Axle) uton(Sp xle) ASpare m)
’

1
! —Al(Flat, Axle}

— TIAl(Flat, Ground)
LeaveOvernight | Al gpareAx/e)
A are,Ground)

—At{Spare. Trunk)

Alex Lascarides Informatics 2D

10/15

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Partial-order planning example (4)

@ Remaining open precondition At(Spare, Trunk), but conflict
between Start and —At(Spare, Trunk) effect of
LeaveOvernight

@ No ordering before Start possible or after
Remove(Spare, Trunk) possible

@ No successor state, backtrack to previous state and remove
LeaveOvernight, resulting in this situation:

At Spare, Trunk)| Remove(Spare,Trunk)
At(Spare, Trunk) Al S ., G

— Al Flat.Axle)

Alex Lascarides Informatics 2D 11/15

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Partial-order planning example (5)

o Now choose Remove(Flat,Axle) instead of LeaveOvernight

o Next, choose At(Spark, Trunk) precondition of
Remove(Spare, Trunk)
Choose Start to achieve this

o Pick At(Flat,Axle) precondition of Remove(Flat,Axle),
choose Start to achieve it

o Final, complete, consistent plan:

At(Spare, Trunk)| Remove(Spare, Trunk)

AtlSpare, Trunk) Al Spare, Ground)
At{Spare . Axle)
A,(F,-am,(,s) —AKFlat Axle) PutOn(Spare,Axle)

At{Flat Axle) | Remove(Flat,Axle)

Alex Lascarides Informatics 2D 12/15

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Dealing with unbound variables

@ In first-order case, unbound variables may occur during
planning process
o Example:
Action(Move(b, x, y),
Precond: On(b, x) A Clear(b) A Clear(y)
Effect:On(b,y) A Clear(x) A—=On(b,x) A—Clear(y))

achieves On(A, B) under substitution {b/A,y/B}
o Applying this substitution yields
Action(Move(A, x, B),
Precond:On(A, x) A Clear(A) A Clear(B)
Effect:On(A, B) A Clear(x) A—=On(A, x) A—Clear(B))

and x is still unbound (another side of the least commitment
approach)

Alex Lascarides Informatics 2D 13/15

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

Dealing with unbound variables

@ Also has an effect on links, e.g. in example above
Move(A, x, B) On(AB) Finish would be added

o If another action has effect =On(A, z) then this is only a
conflict if z=B

@ Solution: insert inequality constraints (in example: z # B)
and check these constraints whenever applying substitutions

@ Remark on heuristics: Even harder than in total-order planning,
e.g. adapt most-constrained-variable approach from CSPs

Alex Lascarides Informatics 2D 14 /15

Summary

*]
*]
(*]
(*]
(*]
(*]

Partial-order planning

The POP algorithms

POP as search in planning space

POP example

POP with unbound variables

Next time: Planning and Acting in the Real World

Alex Lascarides Informatics 2D 15/15

	Partial-order planning
	The POP algorithm
	Example
	Dealing with unbound variables

	Summary

