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Where are we?

Last time . . .

Discussed planning with state-space search
Identified weaknesses of this approach
Introduced partial-order planning

Search in plan space rather than state space
Described the POP algorithm and examples

Today . . .

Planning and acting in the real world I
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Planning/acting in Nondeterministic Domains

So far only looked at classical planning,
i.e. environments are fully observable, static, deterministic
Also assumed that action descriptions are correct and complete
Unrealistic in many real-world applications:

Don’t know everything; may even hold incorrect information
Actions can go wrong

Distinction: bounded vs. unbounded indeterminacy: can
possible preconditions and effects be listed at all?
Unbounded indeterminacy related to qualification problem
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Methods for handling indeterminacy

Sensorless/conformant planning: achieve goal in all
possible circumstances, relies on coercion
Contingency planning: for partially observable and
non-deterministic environments; includes sensing actions and
describes different paths for different circumstances
Online planning and replanning: check whether plan
requires revision during execution and replan accordingly
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Example Problem: Paint table and chair same colour

Initial State: We have two cans of paint and table and chair, but
colours of paint and of furniture is unknown:

Object(Table)∧Object(Chair)∧Can(C1)∧Can(C2)∧ InView(Table)

Goal State: Chair and table same colour:
Color(Chair,c)∧Color(Table,c)

Actions: To look at something; to open a can; to paint.
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Formal Representation of the Three Actions

Now we allow variables in preconditions that aren’t part of the
actions’s variable list!

Action(RemoveLid(can),
Precond:Can(can)
Effect:Open(can))

Action(Paint(x ,can),
Precond:Object(x)∧Can(can)∧Color(can,c)∧Open(can)
Effect:Color(x ,c))

Action(LookAt(x),
Precond:InView(y)∧ (x 6= y)
Effect:InView(x)∧¬InView(y))
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Sensing with Percepts

A percept schema models the agent’s sensors.
It tells the agent what it knows, given certain conditions about
the state it’s in.

Percept(Color(x ,c),
Precond:Object(x)∧ InView(x))

Percept(Color(can,c),
Precond:Can(can)∧Open(can)∧ InView(can))

A fully observable environment has a percept axiom for each
fluent with no preconditions!
A sensorless planner has no percept schemata at all!
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Planning

One could coerce the table and chair to be the same colour by
painting them both—a sensorless planner would have to do
this!
But a contingent planner can do better than this:

1 Look at the table and chair to sense their colours.
2 If they’re the same colour, you’re done.
3 If not, look at the paint cans.
4 If one of the can’s is the same colour as one of the pieces of

furniture, then apply that paint to the other piece of furniture.
5 Otherwise, paint both pieces with one of the cans.
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What’s needed?

When sensors aren’t powerful enough
Don’t know the value of all relevant fluents
So you must plan using your beliefs, not the representation of
the actual state.
How do we represent beliefs?

When actions can have more than one outcome
Need to represent conditional effects in action schemata.
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How to represent belief states

1. Sets of state representations, e.g.

{(AtL∧CleanR ∧CleanL),(AtL∧CleanL)}

(2n states!)
2. Logical sentences can capture a belief state, e.g. AtL∧CleanL

shows ignorance about CleanR by not mentioning it!
This often offers a more compact representation, but
Many equivalent sentences; need canonical representation to
avoid general theorem proving; E.g:

All representations are ordered conjunctions of literals (under
open-world assumption)
But this doesn’t capture everything (e.g. AtL∨CleanR)

3. Knowledge propositions, e.g. K (AtR)∧K (CleanR)
(closed-world assumption)
Will use second method, but clearly loss of expressiveness
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Beliefs and Sensorless Planning

When you have no sensors, you need:
to represent and track your (changing) beliefs as you perform
actions . . .
. . . and so cope with sensorless planning

Example
Table and chair, two cans of paint
you know these objects exist, but you can’t see them
You can open cans, and paint furniture
Goal: table and chair to be same colour

Alex Lascarides Informatics 2D 11 / 27



Introduction
Partially Observable Environments

Sensorless Planning
Contingent Planning

Summary

Sensorless Planning Example: The Belief States

There are no InView fluents, because there are no sensors!
There are unchanging facts:
Object(Table)∧Object(Chair)∧Can(C1)∧Can(C2)

And we know that the objects and cans have colours:
∀x∃cColor(x ,c)
After skolemisation this gives an initial belief state:

b0 = Color(x ,C (x))

A belief state corresponds exactly to the set of possible worlds
that satisfy the formula—open world assumption.
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The Plan

[RemoveLid(C1),Paint(Chair,C1),Paint(Table,C1)]

Rules:
You can only apply actions whose preconditions are satisfied by
your current belief state b.
The update of a belief state b given an action a is the set of
all states that result (in the physical transition model) from
doing a in each possible state s that satisfies belief state b:

b′ = Result(b,a) = {s ′ : s ′ = ResultP(s,a)∧ s ∈ b}
Or, when a belief b is expressed as a formula:

1 If action adds l , l becomes a conjunct of the formula b′ (and
the conjunct ¬l removed, if necessary); so b′ |= l

2 If action deletes l , ¬l becomes a conjunct of b′ (and l
removed).

3 If action says nothing about l , it retains its b-value.Alex Lascarides Informatics 2D 13 / 27
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Showing the Plan Works

b0 = Color(x ,C (x))
b1 = Result(b0,RemoveLid(C1))

= Color(x ,C (x))∧Open(C1)
b2 = Result(b1,Paint(Chair,C1))

(binding {x/C1,c/C (C1)} satisfies Precond)
= Color(x ,C (x))∧Open(C1)∧Color(Chair,C (C1))

b3 = Result(b2,Paint(Table,C1))
= Color(x ,C (x))∧Open(C1)∧

Color(Chair,C (C1))∧Color(Table,C (C1))
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Extending Representations to handle nondeterministic outcomes
Search with Nondeterministic Actions
And with Partially observable environments

Conditional Effects

So far, we have only considered actions that have the same
effects on all states where the preconditions are satisfied.
This means that any initial belief state that is a conjunction is
updated by the actions to a belief state that is also a
conjunction.
But some actions are best expressed with conditional effects.
This is especially true if the effects are non-deterministic, but
in a bounded way.
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Extending Representations to handle nondeterministic outcomes
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Extending action representations

Disjunctive effects: Action(Left,Precond:AtR,Effect:AtL∨AtR)

Conditional effects:
Action(Vacuum,

Precond:
Effect:(when AtL : CleanL)∧ (when AtR : CleanR))

Combination:
Action(Left,
Precond:AtR
Effect:AtL∨ (AtL∧ (when CleanL : ¬CleanL)))

Conditional steps: if AtL∧CleanL then Right else Vacuum
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The earlier painting furniture example

Planning Problem
Table and chair, two cans of paint,
can open can, paint furniture with paint inside
Goal: table and chair the same colour

Contingent Plan
1 Look at the table and chair to sense their colours.
2 If they’re the same colour, you’re done.
3 If not, look at the paint cans.
4 If one of the can’s is the same colour as one of the pieces of

furniture, then apply that paint to the other piece of furniture.
5 Otherwise, paint both pieces with one of the cans.
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The Three Actions (reminder)

Action(RemoveLid(can),
Precond:Can(can)
Effect:Open(can))

Action(Paint(x ,can),
Precond:Object(x)∧Can(can)∧Color(can,c)∧Open(can)
Effect:Color(x ,c))

Action(LookAt(x),
Precond:InView(y)∧ (x 6= y)
Effect:InView(x)∧¬InView(y))
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Percepts (reminder)

Percept(Color(x ,c),
Precond:Object(x)∧ InView(x))

Percept(Color(can,c),
Precond:Can(can)∧Open(can)∧ InView(can))
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Formal Representation of the Contingent Plan

[LookAt(Table),LookAt(Chair)
if Color(Table,c)∧Color(Chair,c) then NoOp
else [RemoveLid(C1),LookAt(C1),RemoveLid(C2),LookAt(C2),
if Color(Chair,c)∧Color(can,c) then Paint(Table,can)
else if Color(Table,c)∧Color(can,c) then Paint(Chair,can)
else [Paint(Chair,C1),Paint(Table,C1)]]]

Variables (e.g., c) are existentially quantified.
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Search with Nondeterministic Actions
And with Partially observable environments

Games against nature

Conditional plans should succeed regardless of circumstances
Nesting conditional steps results in trees
Similar to adversarial search, games against nature
Game tree has state nodes and chance nodes where nature
determines the outcome
Definition of solution: A subtree with

a goal node at every leaf
specifies one action at each state node
includes every outcome at chance node

AND-OR graphs can be used in similar way to the minimax
algorithm (basic idea: find a plan for every possible result of a
selected action)
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Example: “double Murphy” vacuum cleaner

Vacuum cleaner sometimes deposits dirt at its destination
when moving or when vacuuming in a clean square
Solution: [Left, if CleanL;then [] else Vacuum]

Left Vacuum

Right Vacuum Left VacuumGOAL

GOAL

LOOP

LOOP

8 

3 6 8 7 

1 5 7 8 4 2 
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Acyclic vs. cyclic solutions

If identical state is encountered (on same path), terminate
with failure (if there is an acyclic solution it can be reached
from previous incarnation of state)
However, sometimes all solutions are cyclic!
E.g., “triple Murphy” (also) sometimes fails to move.
Plan [Left, if CleanL then [] else Vacuum] now doesn’t work
Cyclic plan:
[L : Left, ifAtR thenLelseifCleanL then []elseVacuum]

8 

Left Vacuum

6 3 7 

GOAL
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Nondeterminism and partially observable environments

“alternate double Murphy”:
Vacuum cleaner can sense cleanliness of square it’s in, but not
the other square, and
dirt can sometimes be left behind when leaving a clean square.
Plan in fully observable world: “Keep moving left and right,
vacuuming up dirt whenever it appears, until both squares are
clean and in the left square”
But now goal test cannot be performed!
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Housework in partially observable worlds

Left

CleanL CleanL

Vacuum

Vacuum

Right

CleanR CleanR

8 4 

A

7 5 

B

3 1 

C

6 2 

D

¬

¬
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Conditional planning, partial observability

Basically, we can apply our AND-OR-search to belief states
(rather than world states)
Full observability is special case of partial observability with
singleton belief states
Is it really that easy?
Not quite, need to describe

representation of belief states
how sensing works
representation of action descriptions
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Summary

Methods for planning and acting in the real world
Dealing with indeterminacy
Contingent planning: use percepts and conditionals to cater
for all contingencies.
Fully observable environments: AND-OR graphs, games
against nature
Partially observable environments: belief states, action and
sensing
Next time: Planning and acting in the real world II
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