Informatics 2D: Reasoning and Agents

Alex Lascarides

Where are we?

Last time. . .

- We have impractical assumptions about planning
 - actions have deterministic outcomes
 - states are fully observable

that we now need to drop.

• General discussion of challenges and planning strategies to deal with more realistic planning problems.

Now: More formal detail.

What's needed?

When sensors aren't powerful enough

- Don't know the value of all relevant fluents
- So you must plan using your **beliefs**, not the representation of the actual state.
- How do we represent beliefs?

When actions can have more than one outcome

• Need to represent conditional effects in action schemata.

What's needed?

When sensors aren't powerful enough

- Don't know the value of all relevant fluents
- So you must plan using your **beliefs**, not the representation of the actual state.
- How do we represent beliefs?

When actions can have more than one outcome

• Need to represent conditional effects in action schemata.

How to represent belief states

1. Sets of state representations, e.g.

```
\{(AtL \land CleanR \land CleanL), (AtL \land CleanL)\}
```

 (2^n states!)

- 2. Logical sentences can capture a belief state, e.g. $AtL \wedge CleanL$ shows ignorance about CleanR by not mentioning it!
 - This often offers a more compact representation, but
 - Many equivalent sentences; need **canonical** representation to avoid general theorem proving; E.g:
 - All representations are ordered conjunctions of literals (under open-world assumption)
 - But this doesn't capture everything (e.g. $AtL \lor CleanR$)
- Knowledge propositions, e.g. K(AtR) ∧ K(CleanR) (closed-world assumption)
- Will use second method, but clearly loss of expressiveness

Beliefs and Sensorless Planning

- When you have no sensors, you need:
 - to represent and track your (changing) **beliefs** as you perform actions . . .
 - ... and so cope with sensorless planning

Example

Table and chair, two cans of paint you know these objects exist, but you can't see them You can open cans, and paint furniture Goal: table and chair to be same colour

Sensorless Planning Example: The Belief States

- There are no InView fluents, because there are no sensors!
- There are unchanging facts: $Object(Table) \land Object(Chair) \land Can(C_1) \land Can(C_2)$
- And we know that the objects and cans have colours: $\forall x \exists c Color(x, c)$
- After skolemisation this gives an initial belief state:

$$b_0 = Color(x, C(x))$$

• A belief state corresponds exactly to the set of possible worlds that satisfy the formula—open world assumption.

The Plan

$[RemoveLid(C_1), Paint(Chair, C_1), Paint(Table, C_1)]$

Rules:

- You can only apply actions whose preconditions are satisfied by your current belief state *b*.
- The update of a belief state b given an action a is the set of all states that result (in the physical transition model) from doing a in each possible state s that satisfies belief state b:
 b' = Result(b, a) = {s' : s' = Result_P(s, a) ∧ s ∈ b}
- Or, when a belief b is expressed as a formula:
 - If action adds *I*, *I* becomes a conjunct of the formula b' (and the conjunct ¬*I* removed, if necessary); so b' ⊨ *I*
 - If action deletes *I*, ¬*I* becomes a conjunct of *b'* (and *I* removed).
 - If action says nothing about *I*, it retains its *b*-value.

Showing the Plan Works

$$\begin{array}{lll} b_0 = & Color(x, C(x)) \\ b_1 = & \operatorname{Result}(b_0, \operatorname{RemoveLid}(C_1)) \\ = & Color(x, C(x)) \wedge Open(C_1) \\ b_2 = & \operatorname{Result}(b_1, \operatorname{Paint}(\operatorname{Chair}, C_1)) \\ & & (\operatorname{binding} \left\{ x/C_1, c/C(C_1) \right\} \text{ satisfies Precond} \right) \\ = & Color(x, C(x)) \wedge Open(C_1) \wedge Color(\operatorname{Chair}, C(C_1)) \\ b_3 = & \operatorname{Result}(b_2, \operatorname{Paint}(\operatorname{Table}, C_1)) \\ = & Color(x, C(x)) \wedge Open(C_1) \wedge \\ & & Color(\operatorname{Chair}, C(C_1)) \wedge Color(\operatorname{Table}, C(C_1)) \end{array}$$

- 4 同 6 4 日 6 4 日 6

- When your sensors aren't powerful enough to fully observe the current state, you need to reason about your beliefs
- Various ways of representing beliefs
- Examined how you can keep track of beliefs as you act, and so cope with sensorless planning.