
Primitive Search
More Advanced Search

Summary

Informatics 2D: Reasoning and Agents

Alex Lascarides

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Lecture 19c: Planning and acting in the real world:
Searching for hierarchical plans

Alex Lascarides Informatics 2D 1 / 14



Primitive Search
More Advanced Search

Summary

Where are we?

Hierarchical Plans
You can represent high level actions (HLAs) using alternative
refinements
A valid high level plan (HLP) is a sequence of HLAs for which
there is an implementation that achieves the goal.
Now: searching for a valid HLP

Alex Lascarides Informatics 2D 2 / 14



Primitive Search
More Advanced Search

Summary

Searching for Primitive Solutions

The HLA plan library is a hierarchy:
(Ordered) Daughters to an HLA are the sequences of actions
provided by one of its refinements;
Because a given HLA can have more than one refinement,
there can be more than one node for a given HLA in the
hierarchy.

This hierarchy is essentially a search space of action sequences
that conform to knowledge about how high-level actions can
be broken down.
So you can search this space for a plan!

Alex Lascarides Informatics 2D 3 / 14



Primitive Search
More Advanced Search

Summary

Searching for Primitive Solutions: Breadth First

Start your plan P with the HLA [Act],
Take the first HLA A in P (recall that P is an action
sequence).
Do a breadth-first search in your hierarchical plan library, to
find a refinement of A whose preconditions are satisfied by the
outcome of the action in P that is prior to A.
Replace A in P with this refinement.
Keep going until your plan P has no HLAs and either:

1 Your plan P’s outcome is the goal, in which case return P; or
2 Your plan P’s outcome is not the goal, in which case

backtrack,
and if nowhere to backtrack then return failure.

Alex Lascarides Informatics 2D 4 / 14



Primitive Search
More Advanced Search

Summary

Problems!

Like forward search, you consider lots of irrelevant actions.
The algorithm essentially refines HLAs right down to primitive
actions so as to determine if a plan will succeed.
This contradicts common sense!
Sometimes you know an HLA will work regardless of how it’s
broken down!
We don’t need to know which route to take to SFOParking to
know this plan works:

[Drive(Home,SFOParking),Shuttle(SFOParking ,SFO)]

We can capture this if we add to HLAs themselves a set of
preconditions and effects.

Alex Lascarides Informatics 2D 5 / 14



Primitive Search
More Advanced Search

Summary

Adding Preconditions and Effects to HLAs

One challenge in specifying preconditions and effects of an
HLA is that the HLA may have more than one refinement,
each one with slightly different preconditions and effects!

If you refine Go(Home,SFO) with Taxi action: you need Cash.
If you refine it with Drive, you don’t!
This difference may affect your choice on how to refine the
HLA!

Recall that an HLA achieves a goal if one of its refinements
does this.
And you can choose the refinement!

Alex Lascarides Informatics 2D 6 / 14



Primitive Search
More Advanced Search

Summary

Getting Formal

s ′ ∈ Reach(s,h) iff s ′ is reachable from at least one of HLA h’s
refinements, given (initial) state s.

Reach(s, [h1,h2]) =
⋃

s ′∈Reach(s,h1)

Reach(s ′,h2)

HLP p achieves goal g given initial state s iff ∃s ′ st

s ′ |= g and s ′ ∈ Reach(s,p)

So we should search HLPs to find a p with this relation to g ,
and then focus on refining it.
But a pre-requisite to this algorithm is to define Reach(s,h)
for each h and s.
In other words, we still need to determine how to represent
effects (and preconditions) of HLAs. . .

Alex Lascarides Informatics 2D 7 / 14



Primitive Search
More Advanced Search

Summary

Defining Reach

A primitive action makes a fluent true, false, or leaves it
unchanged.
But with HLAs you sometimes get to choose, by choosing a
particular refinement!
We add new notation to reflect this:

+̃A: you can possibly add A (or leave A unchanged)
−̃A: you can possibly delete A (or leave A unchanged)
+̃A: you can possibly add A, or

possibly delete A (or leave A unchanged)
You should now derive the correct preconditions and effects
from its refinements!

Alex Lascarides Informatics 2D 8 / 14



Primitive Search
More Advanced Search

Summary

Our SFO Example

Refinment(Go(Home,SFO),
Precond:At(Car,Home)
Steps:[Drive(Home,SFOLongTermParking)

Shuttle(SFOLongTermParking,SFO)])

Refinment(Go(Home,SFO),
Precond:Cash,At(Home)
Steps:[Taxi(Home,SFO)])

Alex Lascarides Informatics 2D 9 / 14



Primitive Search
More Advanced Search

Summary

The ‘Primitive’ Actions

Action(Taxi(a,b),
Precond:Cash,At(Taxi,a)
Effect:¬Cash,¬At(Taxi,a),At(Taxi,b))

Action(Drive(a,b),
Precond:At(Car,a)
Effect:¬At(Car,a),At(Car,b))

Action(Shuttle(a,b),
Precond:At(Shuttle,a)
Effect:¬At(Shuttle,a),At(Shuttle,b))

Alex Lascarides Informatics 2D 10 / 14



Primitive Search
More Advanced Search

Summary

Deriving the Preconds and Effects of the HLA

¬Cash is Effect of one HLA refinement, but not the other.
So ¬̃Cash in HLA Effect!

Not so Simple!
Similar argument for At(Car,SFOParking)
But you can’t choose the combination:
¬Cash∧At(Car,SFOParking)
Solution is to write approximate descriptions.

Alex Lascarides Informatics 2D 11 / 14



Primitive Search
More Advanced Search

Summary

Approximate Descriptions

Optimistic Description: Reach+(s,h)

Take union of all possible outcomes from all refinements.
So this includes ¬̃Cash and +̃At(Car,SFOParking).
This overgenerates reachable states.

Pessimistic Description: Reach−(s,h)

Only states that satisfy effects from all refinements survive.
So this does not include ¬̃Cash or +̃At(Car,SFOParking).
This undergenerates reachable states.

Reach−(s,h)⊆ Reach(s,h)⊆ Reach+(s,h)

Alex Lascarides Informatics 2D 12 / 14



Primitive Search
More Advanced Search

Summary

Algorithm for Finding a Plan

Two Important Facts:
1 If ∃s ′ ∈ Reach−(s,h) st s ′ |= g , you know h can succeed.
2 If ¬∃s ′ ∈ Reach+(s,h) st s ′ |= g , you know h will fail!

The Algorithm:
Do breadth first search as before.
But now you can stop searching and implement instead when
you reach an h where 1. is true.
And you can drop h (and all its refinements) when 2. is true.
If 1. and 2. are both false for the current h, then you don’t
know if h will succeed or fail, but you can find out by refining
it.

Alex Lascarides Informatics 2D 13 / 14



Primitive Search
More Advanced Search

Summary

Summary

HLAs and HLPs
Using refinements and preconditions and effects of primitive
actions to approximate which states are reachable.
Such approximate descriptions of HLAs help to inform search
and when to refine an HLP so as to reach a goal.
Next time: Acting under Uncertainty

Alex Lascarides Informatics 2D 14 / 14


	Primitive Search
	More Advanced Search
	Summary

