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Lecture 22: Probabilities and Bayes' Rule
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Where are we?

Last time ...

@ Introduced basics of decision theory
(probability theory + utility)

@ Talked about random variables, probability distributions

@ Introduced basic probability notation and axioms
Today ...

o Probabilities and Bayes’ Rule
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Inference with JPDs

Inference with joint probability distributions

o Last time we talked about joint probability distributions
(JPDs) but didn't present a method for probabilistic
inference using them

@ Problem: Given some observed evidence and a query
proposition, how can we compute the posterior probability of
that proposition?

o We will first discuss a simple method using a JPD as
“knowledge base”

o Although not very useful in practice, it helps us to discuss
interesting issues along the way
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Inference with JPDs

@ Domain consisting only of Boolean variables Toothache,
Cavity and Catch (steel probe catches in tooth)

o Consider the following JPD:

toothache —toothache
catch | —catch || catch | —catch
cavity || 0.108 | 0.012 | 0.072 | 0.008
—cavity || 0.016 | 0.064 | 0.144 | 0.576

@ Probabilities (table entries) sum to 1

@ We can compute probability of any proposition, e.g.
P(catchV cavity) =
0.108+0.0164+0.072+40.144+0.012+0.008 = 0.36
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Inference with JPDs

Marginalisation, conditioning & normalisation

o Extracting distribution of subset of variables is called
marginalisation: P(Y)=Y,P(Y,z)
o Example:

P(cavity) = P(cavity, toothache, catch) + P(cavity, toothache, —catch)
+ P(cavity, —toothache, catch) + P(cavity, ~toothache, ~catch)
=0.108+0.012+40.07240.008 = 0.2

@ Conditioning — variant using the product rule:

P(Y) =Y P(Y[2)P(2)
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Inference with JPDs

Marginalisation, conditioning & normalisation

o Computing conditional probabilities:

P(cavity A toothache)
P(toothache)

B 0.108+4-0.012 B

~ 0.108+0.012+0.016 +0.064

P(cavity|toothache) =

0.6

@ Normalisation ensures probabilities sum to 1, normalisation
constants often denoted by o

o Example:

P(Cavity|toothache) = aP(Cavity, toothache)
= a[P(Cavity, toothache, catch) + P( Cavity, toothache, —catch))]
= @[(0.108,0.016) -+ (0.012,0.064)] = 0(0.12,0.08) = (0.6,0.4)
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Inference with JPDs

A general inference procedure

o Let X be a query variable (e.g. Cavity), E set of evidence
variables (e.g. { Toothache}) and e their observed values, Y
remaining unobserved variables

o Query evaluation: P(X|e) = aP(X,e) = a Y, P(X,e,y)
@ Note that X, E, and Y constitute complete set of variables,
i.e. P(x,e,y) simply a subset of probabilities from the JPD

o For every value x; of X, sum over all values of every variable in
Y and normalise the resulting probability vector

@ Only theoretically relevant, it requires O(2") steps (and
entries) for n Boolean variables

o Basically, all methods we will talk about deal with tackling this
problem!
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Independence

Independence

Suppose we extend our example with the variable Weather
What is the relationship between old and new JPD?

Can compute P(toothache, catch, cavity, Weather = cloudy)
as:

P(Weather = cloudy |toothache, catch, cavity ) P(toothache, catch, cavity)

And since the weather does not depend on dental stuff, we
expect that

P(Weather = cloudy |toothache, catch, cavity) = P(Weather = cloudy)
e So
P(toothache, catch, cavity, Weather = cloudy) =

P(Weather = cloudy)P(toothache, catch, cavity)

o One 8-element and one 4-element table rather than a 32-table!
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Independence

Independence

o This is called independence, usually written as
P(X|Y)=P(X)or P(Y|X)=P(Y)orP(X,Y)=P(X)P(Y)

@ Depends on domain knowledge; can factor distributions

Cavity

Toothache Catch
Weather

decomposes

decomposes l ity l

into

@ Such independence assumptions can help to dramatically
reduce complexity

@ Independence assumptions are sometimes necessary even when
not entirely justified, so as to make probabilistic reasoning in
the domain practical (more later).
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Applying Bayes' rule
Bayes' rule Conditional Independence

Bayes' rule

e Bayes’ rule is derived by writing the product rule in two forms
and equating them:

P(aA b) = P(a|b)P(b) _ P(alb)P(b)
P(aAb) = P(b|a)P(a) } = Plbla) = =55

@ General case for multivaried variables using background

evidence e:
P(X]Y,e)P(Yle)

P(Xle)
@ Useful because often we have good estimates for three terms
on the right and are interested in the fourth

P(Y|X,e)=
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Applying Bayes' rule
Bayes' rule Conditional Independence

Applying Bayes' rule

(]

Example: meningitis causes stiff neck with 50%, probability of
meningitis (m) 1/50000, probability of stiff neck (s) 1/20
_ P(s|m)P(m) _ 3 X 50000 _ 1

P(m|s) = =
(ms) P(s) 2 5000

Previously, we were able to avoid calculating probability of
evidence (P(s)) by using normalisation
With Bayes' rule: P(M|s) = a(P(s|m)P(m), P(s|—~m)P(—m))
Usefulness of this depends on whether P(s|—m) is easier to
calculate than P(s)
Obvious question: why would conditional probability be
available in one direction and not in the other?
Diagnostic knowledge (from symptoms to causes) is often
fragile
(e.g. P(m|s) will go up if P(m) goes up due to epidemic)
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Applying Bayes' rule
Bayes' rule Conditional Independence

Combining evidence

o Attempting to use additional evidence is easy in the JPD
model

P(Cavity|toothache A catch) = 0.(0.108,0.016) ~ (0.871,0.129)
but requires additional knowledge in Bayesian model:
P(Cavity|toothache A catch) = aP(toothache A catch| Cavity )P(Cavity)

@ This is basically almost as hard as JPD calculation

o Refining idea of independence: Toothache and Catch are
independent given presence/absence of Cavity (both caused by
cavity, no effect on each other)

P(toothache A catch|Cavity) = P(toothache|Cavity )P (catch| Cavity)
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Applying Bayes' rule
Bayes' rule Conditional Independence

Conditional independence

@ Two variables X and Y are conditionally independent given Z
if P(X, Y]Z) = P(X|Z)P(Y!Z)

o Equivalent forms P(X|Y,Z) = P(X|Z), P(Y|X,Z) = P(Y|2)

@ So in our example:

P(Cavity|toothache A catch) = aP(toothache| Cavity )P (catch| Cavity)P( Cavity)

@ As before, this allows us to decompose large JPD tables into
smaller ones, grows as O(n) instead of O(2")

o This is what makes probabilistic reasoning methods scalable at
alll
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Applying Bayes' rule
Bayes' rule Conditional Independence

Conditional independence

o Conditional independence assumptions much more often
reasonable than absolute independence assumptions

o Naive Bayes model:

P(Cause, Effect, ..., Effect,) = P(Cause) H P(Effect;| Cause)
i

o Based on the idea that all effects are conditionally independent
given the cause variable

@ Also called Bayesian classifier or (by some) even “idiot
Bayes model”

@ Works surprisingly well in many domains despite its simplicity!
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Summary

o Probabilistic inference with full JPDs
@ Independence and conditional independence

@ Bayes' rule and its applications problems with fairly simple
techniques

o Next time: Probabilistic Reasoning with Bayesian
Networks
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