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Lecture 22a: Joint Probability Distributions (JPDs)
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Introduction

Where are we?

So far ...

@ Introduced basics of decision theory
(probability theory + utility)

@ Talked about random variables, probability distributions

@ Introduced basic probability notation and axioms
Today ...

o Probabilities and Bayes’ Rule
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Inference with JPDs

Inference with joint probability distributions

o Last time we talked about joint probability distributions
(JPDs) but didn't present a method for probabilistic
inference using them

@ Problem: Given some observed evidence and a query
proposition, how can we compute the posterior probability of
that proposition?

o We will first discuss a simple method using a JPD as
“knowledge base”

o Although not very useful in practice, it helps us to discuss
interesting issues along the way
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Inference with JPDs

@ Domain consisting only of Boolean variables Toothache,
Cavity and Catch (steel probe catches in tooth)
o Consider the following JPD:

toothache —toothache
catch | —catch || catch | —catch
cavity | 0.108 | 0.012 || 0.072 | 0.008
—cavity || 0.016 | 0.064 | 0.144 | 0.576

@ Probabilities (table entries) sum to 1

@ We can compute probability of any proposition, e.g.
P(catchV cavity) =
0.108+0.016+0.072+0.144 4+ 0.01240.008 = 0.36
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Inference with JPDs

Marginalisation, conditioning & normalisation

o Extracting distribution of subset of variables is called
marginalisation: P(Y)=Y,P(Y,z)
o Example:

P(cavity) = P(cavity, toothache, catch) + P(cavity, toothache, —~catch)
+ P(cavity, —toothache, catch) + P(cavity, ~toothache, ~catch)
=0.1084-0.012+4-0.072+0.008 = 0.2

o Conditioning — variant using the product rule:

P(Y) =) P(Y[2)P(z)
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Inference with JPDs

Marginalisation, conditioning & normalisation

o Computing conditional probabilities:

P(cavity A toothache)
P(toothache)

B 0.108 +0.012 B

~0.108+0.012+0.016+0.064

P(cavity|toothache) =

0.6

@ Normalisation ensures probabilities sum to 1, normalisation
constants often denoted by o

o Example:

P( Cavity|toothache) = atP( Cavity, toothache)
= a[P(Cavity, toothache, catch) + P( Cavity, toothache, —catch)|
= «[(0.108,0.016) -+ (0.012,0.064)] = (0.12,0.08) = (0.6,0.4)
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Inference with JPDs

A general inference procedure

o Let X be a query variable (e.g. Cavity), E set of evidence
variables (e.g. { Toothache}) and e their observed values, Y
remaining unobserved variables

o Query evaluation: P(X|e) = aP(X,e) = a),P(X,e,y)
o Note that X, E, and Y constitute complete set of variables,
i.e. P(x,e,y) simply a subset of probabilities from the JPD

o For every value x; of X, sum over all values of every variable in
Y and normalise the resulting probability vector

@ Only theoretically relevant, it requires O(2") steps (and
entries) for n Boolean variables

o Basically, all methods we will talk about deal with tackling this
problem!
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Summary

@ You can use a JPD to answer any query

o Marginalisation
o Normalisation
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