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Lecture 22a: Joint Probability Distributions (JPDs)
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Where are we?

So far . . .
Introduced basics of decision theory
(probability theory + utility)
Talked about random variables, probability distributions
Introduced basic probability notation and axioms

Today . . .

Probabilities and Bayes’ Rule
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Inference with joint probability distributions

Last time we talked about joint probability distributions
(JPDs) but didn’t present a method for probabilistic
inference using them
Problem: Given some observed evidence and a query
proposition, how can we compute the posterior probability of
that proposition?
We will first discuss a simple method using a JPD as
“knowledge base”
Although not very useful in practice, it helps us to discuss
interesting issues along the way
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Example

Domain consisting only of Boolean variables Toothache,
Cavity and Catch (steel probe catches in tooth)
Consider the following JPD:

toothache ¬toothache
catch ¬catch catch ¬catch

cavity 0.108 0.012 0.072 0.008
¬cavity 0.016 0.064 0.144 0.576

Probabilities (table entries) sum to 1
We can compute probability of any proposition, e.g.
P(catch∨ cavity) =
0.108+0.016+0.072+0.144+0.012+0.008= 0.36
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Marginalisation, conditioning & normalisation

Extracting distribution of subset of variables is called
marginalisation: P(Y) = ∑zP(Y,z)
Example:

P(cavity) = P(cavity , toothache,catch)+P(cavity , toothache,¬catch)
+P(cavity ,¬toothache,catch)+P(cavity ,¬toothache,¬catch)
= 0.108+0.012+0.072+0.008 = 0.2

Conditioning – variant using the product rule:

P(Y) = ∑
z

P(Y|z)P(z)
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Marginalisation, conditioning & normalisation

Computing conditional probabilities:

P(cavity |toothache) = P(cavity ∧ toothache)

P(toothache)

=
0.108+0.012

0.108+0.012+0.016+0.064
= 0.6

Normalisation ensures probabilities sum to 1, normalisation
constants often denoted by α

Example:

P(Cavity |toothache) = αP(Cavity , toothache)
=α[P(Cavity , toothache,catch)+P(Cavity , toothache,¬catch)]
=α[〈0.108,0.016〉+〈0.012,0.064〉] =α〈0.12,0.08〉= 〈0.6,0.4〉
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A general inference procedure

Let X be a query variable (e.g. Cavity), E set of evidence
variables (e.g. {Toothache}) and e their observed values, Y
remaining unobserved variables
Query evaluation: P(X |e) = αP(X ,e) = α ∑y P(X ,e,y)
Note that X , E, and Y constitute complete set of variables,
i.e. P(x ,e,y) simply a subset of probabilities from the JPD
For every value xi of X , sum over all values of every variable in
Y and normalise the resulting probability vector
Only theoretically relevant, it requires O(2n) steps (and
entries) for n Boolean variables
Basically, all methods we will talk about deal with tackling this
problem!
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Summary

You can use a JPD to answer any query
Marginalisation
Normalisation
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