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Where are we?

So far. . .
JPDs can answer any query, but intractable
Independence critical for practical inference
Bayes Rule useful for inference from available evidence
Today: Combining Evidence
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Combining evidence

Attempting to use additional evidence is easy in the JPD
model

P(Cavity |toothache ∧ catch) = α〈0.108,0.016〉 ≈ 〈0.871,0.129〉

but requires additional knowledge in Bayesian model:

P(Cavity |toothache∧catch)=αP(toothache∧catch|Cavity)P(Cavity)

This is basically almost as hard as JPD calculation
Refining idea of independence: Toothache and Catch are
independent given presence/absence of Cavity (both caused by
cavity, no effect on each other)

P(toothache∧catch|Cavity) = P(toothache|Cavity)P(catch|Cavity)
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Conditional independence

Two variables X and Y are conditionally independent given Z
if P(X ,Y |Z ) = P(X |Z )P(Y |Z )

Equivalent forms P(X |Y ,Z ) = P(X |Z ), P(Y |X ,Z ) = P(Y |Z )

So in our example:

P(Cavity |toothache∧catch)=αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

As before, this allows us to decompose large JPD tables into
smaller ones, grows as O(n) instead of O(2n)
This is what makes probabilistic reasoning methods scalable at
all!
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Conditional independence

Conditional independence assumptions much more often
reasonable than absolute independence assumptions
Naive Bayes model:

P(Cause,Effect1, . . . ,Effectn) = P(Cause)∏
i

P(Effecti |Cause)

Based on the idea that all effects are conditionally independent
given the cause variable
Also called Bayesian classifier or (by some) even “ idiot
Bayes model”
Works surprisingly well in many domains despite its simplicity!
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Summary

Probabilistic inference using JPDs is impractical
Independence and conditional independence help make
inference tractable.
Model design must balance independence assumptions vs.
accuracy and complexity of inference
Next time: Probabilistic Reasoning with Bayesian
Networks
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