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Lecture 23a: Introduction to Bayesian Networks
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Introduction

Where are we?

Last time ...
@ Using JPD tables for probabilistic inference
o Concepts of absolute and conditional independence
o Bayes' rule
Today ...
o Introduction to Bayesian Networks
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Representing knowledge in an uncertain domain

Representing knowledge in an uncertain domain

o Full joint probability distributions can become intractably large
very quickly

o Conditional independence helps to reduce the number of
probabilities required to specify the JPD

o Now we will introduce Bayesian networks (BNs) to
systematically describe dependencies between random variables

@ Roughly speaking, BNs are graphs that connect nodes
representing variables with each other whenever they depend
on each other
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Representing knowledge in an uncertain domain

Bayesian networks

o A BN is a directed acyclic graph (DAG) with nodes annotated
with probability information

@ The nodes represent random variables (discrete/continuous)

o Links connect nodes. If there is an arrow from X to Y, we call
X a parent of Y

o Each node X; has a conditional probability distribution (CPD)
attached to it

@ The CPD describes how X; depends on its parents, i.e. its
entries describe P(X;|Parents(X;))
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Representing knowledge in an uncertain domain

Bayesian networks

@ Topology of graphs describes conditional independence
relationships

o Intuitively, links describe direct effects of variables on each
other in the domain

@ Assumption: anything that is not directly connected does not
directly depend on each other

@ In previous dentist/weather example:
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Representing knowledge in an uncertain domain

Arcs and Independence

Each variable is conditionally independent of its non-descendants,
given its parents.

If X & Parents*(Y), then
P(X|Parents(X),Y) = P(X|Parents(X))
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Representing knowledge in an uncertain domain

Example

@ New burglar alarm has been fitted, fairly reliable but
sometimes reacts to earthquakes

@ Neighbours John and Mary promise to call when they hear
alarm

o John sometimes mistakes phone for alarm, and Mary listens to

loud music and sometimes doesn’t hear alarm
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Representing knowledge in an uncertain domain

Example — things to note

@ No perception of earthquake by John or Mary

@ No explicit modelling of phone ring confusing John, or of
Mary's loud music
(summarised in uncertainty regarding their reaction)

@ Actually this uncertainty summarises any kind of failure

o almost impossible to enumerate all possible causes,
e and we don’t have estimates for their probabilities anyway

o Each row in CPTs contains a conditioning case,
one row for each possible combination of values of the parents.

o We often omit P(—x;|Parents(X;)) from CPT for node X;
(computes as 1 — P(x;|Parents(X;)))

o P(J|M,A,B,E)=P(J|A) and P(M|J,A, B,E) = P(M|A)
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Summary

@ BNs consist of two components:

© A graphical that captures conditional independence among
RVs (more later)
@ A CPT for each RV: P(X|Parents(X))

@ Probabilities/uncertainty in a BN can be due to:

@ Your choice not to model certain factors
@ Genuine ignorance about what factors are relevant

@ Next time: BNs are a compact representation of JPDs
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