Informatics 2D: Reasoning and Agents

Alex Lascarides

informátics

Lecture 23a: Introduction to Bayesian Networks

Where are we?

Last time ...

- Using JPD tables for probabilistic inference
- Concepts of absolute and conditional independence
- Bayes' rule

Today ...

- Introduction to Bayesian Networks

Representing knowledge in an uncertain domain

- Full joint probability distributions can become intractably large very quickly
- Conditional independence helps to reduce the number of probabilities required to specify the JPD
- Now we will introduce Bayesian networks (BNs) to systematically describe dependencies between random variables
- Roughly speaking, BNs are graphs that connect nodes representing variables with each other whenever they depend on each other

Bayesian networks

- A BN is a directed acyclic graph (DAG) with nodes annotated with probability information
- The nodes represent random variables (discrete/continuous)
- Links connect nodes. If there is an arrow from X to Y, we call X a parent of Y
- Each node X_{i} has a conditional probability distribution (CPD) attached to it
- The CPD describes how X_{i} depends on its parents, i.e. its entries describe $\mathbf{P}\left(X_{i} \mid\right.$ Parents $\left.\left(X_{i}\right)\right)$

Bayesian networks

- Topology of graphs describes conditional independence relationships
- Intuitively, links describe direct effects of variables on each other in the domain
- Assumption: anything that is not directly connected does not directly depend on each other
- In previous dentist/weather example:

Arcs and Independence

Each variable is conditionally independent of its non-descendants, given its parents.

> If $X \notin$ Parents $^{*}(Y)$, then $\mathrm{P}(X \mid$ Parents $(X), Y)=\mathrm{P}(X \mid$ Parents $(X))$

Example

- New burglar alarm has been fitted, fairly reliable but sometimes reacts to earthquakes
- Neighbours John and Mary promise to call when they hear alarm
- John sometimes mistakes phone for alarm, and Mary listens to loud music and sometimes doesn't hear alarm

Example - things to note

- No perception of earthquake by John or Mary
- No explicit modelling of phone ring confusing John, or of Mary's loud music (summarised in uncertainty regarding their reaction)
- Actually this uncertainty summarises any kind of failure
- almost impossible to enumerate all possible causes,
- and we don't have estimates for their probabilities anyway
- Each row in CPTs contains a conditioning case, one row for each possible combination of values of the parents.
- We often omit $P\left(\neg x_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$ from CPT for node X_{i} (computes as $1-P\left(x_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$)
- $\mathrm{P}(J \mid M, A, B, E)=\mathrm{P}(J \mid A)$ and $\mathrm{P}(M \mid J, A, B, E)=\mathrm{P}(M \mid A)$

Summary

- BNs consist of two components:
(1) A graphical that captures conditional independence among RVs (more later)
(2) A CPT for each RV: $P(X \mid \operatorname{Parents}(X))$
- Probabilities/uncertainty in a BN can be due to:
(1) Your choice not to model certain factors
(2) Genuine ignorance about what factors are relevant
- Next time: BNs are a compact representation of JPDs

