Informatics 2D: Reasoning and Agents

Alex Lascarides

informátics

Lecture 23b: The Semantics of Bayesian Networks

Where are we?

Last time. . .

- An introduction to Bayesian Networks:
(1) Graph of random variables: arcs showing dependencies (more today)
(2) $P(X \mid \operatorname{Parents}(X))$ for each random variable X
- Today: Semantics of Bayesian Networks Compact representation of JPDs

Reminder of the example BN

- New burglar alarm has been fitted, fairly reliable but sometimes reacts to earthquakes
- Neighbours John and Mary promise to call when they hear alarm
- John sometimes mistakes phone for alarm, and Mary listens to loud music and sometimes doesn't hear alarm

The semantics of Bayesian Networks

- Two views:
- BN as representation of JPD (useful for constructing BNs)
- BN as collection of conditional independence statements (useful for designing inference procedures)
- Every entry $P\left(X_{1}=x_{1} \wedge \ldots \wedge X_{n}=x_{n}\right)$ in the JPD can be calculated from a BN (abbreviate by $\left.P\left(x_{1}, \ldots, x_{n}\right)\right)$
- $P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- Example:

$$
\begin{aligned}
& P(j \wedge m \wedge a \wedge \neg b \wedge \neg e) \\
& \quad=P(j \mid a) P(m \mid a) P(a \mid \neg b \wedge \neg e) P(\neg b) P(\neg e) \\
& \quad=0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998=0.00062
\end{aligned}
$$

- As before, this can be used to answer any query

A method for constructing BNs

- Recall product rule for n variables:

$$
P\left(x_{1}, \ldots, x_{n}\right)=P\left(x_{n} \mid x_{n-1}, \ldots, x_{1}\right) P\left(x_{n-1}, \ldots, x_{1}\right)
$$

- Repeated application of this yields the so-called chain rule:

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{n}\right) & =P\left(x_{n} \mid x_{n-1}, \ldots, x_{1}\right) P\left(x_{n-1} \mid x_{n-2}, \ldots, x_{1}\right) \cdots P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right) \\
& =\prod_{i=1}^{n} P\left(x_{i} \mid x_{i-1}, \ldots, x_{1}\right)
\end{aligned}
$$

- With this we obtain $\mathrm{P}\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)=\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$ as long as $\operatorname{Parents}\left(X_{i}\right) \subseteq\left\{X_{i-1}, \ldots, X_{1}\right\}$ (this can be ensured by labelling nodes appropriately)
- For example, it is reasonable to assume that
\mathbf{P} (MaryCalls \mid JohnCalls, Alarm, Earthquake, Burglary $)=\mathbf{P}($ MaryCalls \mid Alarm $)$

Compactness and node ordering

- BNs examples of locally structured (sparse) systems: subcomponents only interact with small number of other components
- E.g. if 30 nodes and every node depends on 5 nodes, BN will have $30 \times 2^{5}=960$ probabilities stored in the CPDs, while JPD would have $2^{30} \approx 1000^{3}$ entries
- But remember that this is based on designer's independence assumptions!
- Also not trivial to determine good BN structure: Add "root causes" first, then variables they influence, and so on, until we reach "leaves" which have no influence on other variables

Conditional independence relations in BNs

- Have provided "numerical" semantics, but can also look at (equivalent) "topological" semantics, namely:

1. A node is conditionally independent of its non-descendants, given its parents
2. A node is conditionally independent of all other nodes, given its parents, children and children's parents, i.e. its Markov blanket

Summary

- BNs are a compact representation of JPDs
- They capture, and so enable us to exploit, conditional independence among the random variables
- Next time: More on CPTs in BNs

