Informatics 2D: Reasoning and Agents

Alex Lascarides

Lecture 23b: The Semantics of Bayesian Networks

Where are we?

Last time...

- An introduction to Bayesian Networks:
 - Graph of random variables: arcs showing dependencies (more today)
 - \bigcirc P(X|Parents(X)) for each random variable X
- Today: Semantics of Bayesian Networks
 Compact representation of JPDs

Reminder of the example BN

- New burglar alarm has been fitted, fairly reliable but sometimes reacts to earthquakes
- Neighbours John and Mary promise to call when they hear alarm
- John sometimes mistakes phone for alarm, and Mary listens to loud music and sometimes doesn't hear alarm

The semantics of Bayesian Networks

- Two views:
 - BN as representation of JPD (useful for constructing BNs)
 - BN as collection of conditional independence statements (useful for designing inference procedures)
- Every entry $P(X_1 = x_1 \land ... \land X_n = x_n)$ in the JPD can be calculated from a BN (abbreviate by $P(x_1,...,x_n)$)
- $P(x_1,...,x_n) = \prod_{i=1}^n P(x_i|parents(X_i))$
- Example:

$$P(j \land m \land a \land \neg b \land \neg e)$$
= $P(j|a)P(m|a)P(a|\neg b \land \neg e)P(\neg b)P(\neg e)$
= $0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 = 0.00062$

As before, this can be used to answer any query

A method for constructing BNs

Recall product rule for n variables:

$$P(x_1,...,x_n) = P(x_n|x_{n-1},...,x_1)P(x_{n-1},...,x_1)$$

Repeated application of this yields the so-called chain rule:

$$P(x_1,...,x_n) = P(x_n|x_{n-1},...,x_1)P(x_{n-1}|x_{n-2},...,x_1)\cdots P(x_2|x_1)P(x_1)$$

= $\prod_{i=1}^n P(x_i|x_{i-1},...,x_1)$

- With this we obtain $P(X_i|X_{i-1},...,X_1) = P(X_i|Parents(X_i))$ as long as $Parents(X_i) \subseteq \{X_{i-1},...,X_1\}$ (this can be ensured by labelling nodes appropriately)
- For example, it is reasonable to assume that

P(MaryCalls|JohnCalls, Alarm, Earthquake, Burglary) = P(MaryCalls|Alarm)

Compactness and node ordering

- BNs examples of locally structured (sparse) systems: subcomponents only interact with small number of other components
- E.g. if 30 nodes and every node depends on 5 nodes, BN will have $30 \times 2^5 = 960$ probabilities stored in the CPDs, while JPD would have $2^{30} \approx 1000^3$ entries
- But remember that this is based on designer's independence assumptions!
- Also not trivial to determine good BN structure:
 Add "root causes" first, then variables they influence, and so on, until we reach "leaves" which have no influence on other variables

Conditional independence relations in BNs

- Have provided "numerical" semantics, but can also look at (equivalent) "topological" semantics, namely:
 - 1. A node is conditionally independent of its **non-descendants**, given its parents
 - A node is conditionally independent of all other nodes, given its parents, children and children's parents, i.e. its Markov blanket

Summary

- BNs are a compact representation of JPDs
- They capture, and so enable us to exploit, conditional independence among the random variables
- Next time: More on CPTs in BNs