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Where are we?

Last time. ..
@ An introduction to Bayesian Networks:

@ Graph of random variables: arcs showing dependencies (more
today)
@ P(X|Parents(X)) for each random variable X

e Today: Semantics of Bayesian Networks
Compact representation of JPDs
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Reminder of the example BN

@ New burglar alarm has been fitted, fairly reliable but
sometimes reacts to earthquakes

@ Neighbours John and Mary promise to call when they hear
alarm

o John sometimes mistakes phone for alarm, and Mary listens to

loud music and sometimes doesn’t hear alarm
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Representing a full JPD
Constructing Bayesian networks
Conditional independence relations in BNs

The semantics of Bayesian Networks

The semantics of Bayesian Networks

@ Two views:

o BN as representation of JPD (useful for constructing BNs)
o BN as collection of conditional independence statements
(useful for designing inference procedures)

o Every entry P(X1 =x1 A...A X, =Xxy) in the JPD can be
calculated from a BN (abbreviate by P(xi,...,%,))

o P(x1,...,xn) =[11-1 P(xi|parents(X;))
o Example:

P(jAnmAan—bA—e)
= P(jla)P(m|a)P(a|~bA—e)P(—b)P(—e)
=0.9x0.7 x 0.001 x 0.999 x 0.998 = 0.00062

@ As before, this can be used to answer any query

Alex Lascarides Informatics 2D 4/8



Representing a full JPD
Constructing Bayesian networks
Conditional independence relations in BNs

The semantics of Bayesian Networks

A method for constructing BNs

o Recall product rule for n variables:
P(x1,...yxn) = P(Xn|Xn—1, s x1)P(Xn—1, .., X1)

o Repeated application of this yields the so-called chain rule:

POty Xa) = POalnts 030 Pt n2, 1) -+ Plxalxa) P(x1)

= HP(X,-|X,-,1,...,X1)
i=1

e With this we obtain P(X;|Xi_1,...,X1) = P(Xi|Parents(X;))

as long as Parents(X;) C {Xi_1,...,X1} (this can be ensured

by labelling nodes appropriately)
o For example, it is reasonable to assume that

P(MaryCalls|JohnCalls, Alarm, Earthquake, Burglary) = P(MaryCalls| Alarm)
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Representing a full JPD
Constructing Bayesian networks
Conditional independence relations in BNs

The semantics of Bayesian Networks

Compactness and node ordering

@ BNs examples of locally structured (sparse) systems:
subcomponents only interact with small number of other
components

e E.g. if 30 nodes and every node depends on 5 nodes, BN will
have 30 x 2° = 960 probabilities stored in the CPDs, while
JPD would have 239 ~ 10003 entries

o But remember that this is based on designer's independence
assumptions!

@ Also not trivial to determine good BN structure:

Add “root causes” first, then variables they influence, and so

on, until we reach “leaves” which have no influence on other
variables
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Representing a full JPD
Constructing Bayesian networks
Conditional independence relations in BNs

The semantics of Bayesian Networks

Conditional independence relations in BNs

@ Have provided “numerical’ semantics, but can also look at
(equivalent) “topological” semantics, namely:
1. A node is conditionally independent of its non-descendants,
given its parents
2. A node is conditionally independent of all other nodes, given
its parents, children and children’s parents, i.e. its Markov
blanket
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Summary

@ BNs are a compact representation of JPDs

@ They capture, and so enable us to exploit, conditional
independence among the random variables

@ Next time: More on CPTs in BNs

Alex Lascarides Informatics 2D 8/8



	The semantics of Bayesian Networks
	Representing a full JPD
	Constructing Bayesian networks
	Conditional independence relations in BNs

	Summary

