Informatics 2D: Reasoning and Agents

Alex Lascarides

Lecture 23c: Efficient Representations of CPTs in BNs

Where are we?

- BNs are:
 - A DAG that captures conditional independence
 - OPTs for each variable: P(X|Parents(X))
- BNs are a compact representation of JPDs, so can answer any query with a BN (more next time)
- Today: Efficient representation of CPTs in BNs

Efficient representation of conditional distributions

- Even the 2^k (k parents) conditioning cases that have to be provided require a great deal of experience and knowledge of the domain
- Arbitrary relationships are unlikely, often describable by canonical distributions that fit some standard pattern
- By specifying pattern by a few parameters we can save a lot of space!
- Simplest case: deterministic node that can be directly inferred from values of parents
- For example, logical or mathematical functions

Noisy-OR relationships

- Any cause *can* make effect true, but won't *necessarily* (effect inhibited; *P*(*effect*|*cause*) < 1)
- Assumes all causes are listed (leak node can be used to cater for "miscellaneous" unlisted causes)
- Also assumes inhibitions are mutually conditionally independent
 - Whatever inhibits C₁ from making E true is independent of what inhibits C₂ from making E true.
- So *E* is *false* only if each of its *true* parents are inhibited and we can compute this likelihood from product of probabilities for each individual cause inhibiting *E*.
- How does this help?

Example of Noisy-OR

- Fever is caused by Cold, Flu or Malaria and that's all (!!)
- Inhibitions of Cold, Flu and Malaira are mutually conditionally independent
- Likelihood that Cold is inhibited from causing Fever is P(¬fever|cold, ¬flu, ¬malaria) (similarly for other causes)
- Individual inhibition probabilities:

$$P(\neg fever | cold, \neg flu, \neg malaria) = 0.6$$

 $P(\neg fever | \neg cold, flu, \neg malaria) = 0.2$
 $P(\neg fever | \neg cold, \neg flu, malaria) = 0.1$

• Inhibitions mutually independent, so:

 $P(\neg fever | cold, flu, \neg malaria) = P(\neg fever | cold, \neg flu, \neg malaria) P(\neg fever | \neg cold, flu, \neg malaria)$

Noisy-OR relationships

• We can construct entire CPT from this information

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	0.02=0.2 ×0.1
Т	F	F	0.4	0.6
Т	F	Т	0.94	0.06=0.6 ×0.1
Т	Т	F	0.88	0.12=0.6 ×0.2
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

• Encodes CPT with k instead of 2^k values!

BNs with continuous variables

- Often variables range over continuous domains
- **Discretisation** one possible solution but often leads to inaccuracy or requires a lot of discrete values
- Other solution: use of standard families of probability distributions specified in terms of a few parameters
- Example: normal/Gaussian distribution $N(\mu, \sigma^2)(x)$ defined in terms of mean μ and variance σ^2 (needs just two parameters)
- Hybrid Bayesian Networks use mixture of discrete and continuous variables (special methods to deal with links between different types – not discussed here)

Summary

- Introduced Bayesian Networks as a structured way of reasoning under uncertainty using probabilities and independence
- Defined their semantics in terms of JPD representation, and conditional independence statements
- Gave numerical and topological interpretation of semantics
- Talked about issues of efficient representation of CPTs
- Discussed continuous variables and hybrid networks
- Next time: Exact Inference in Bayesian Networks