Informatics 2D: Reasoning and Agents

Alex Lascarides

informatics

Lecture 24: Exact Inference in Bayesian Networks

Where are we?

Last time ...

- Introduced Bayesian networks
- Allow for compact representation of JPDs
- Methods for efficient representations of CPTs
- But how hard is inference in BNs ?

Today ...

- Inference in Bayesian networks

Example BN

- New burglar alarm has been fitted, fairly reliable but sometimes reacts to earthquakes
- Neighbours John and Mary promise to call when they hear alarm
- John sometimes mistakes phone for alarm, and Mary listens to loud music and sometimes doesn't hear alarm

Inference in BNs

- Basic task: compute posterior distribution for set of query variables given some observed event (i.e. assignment of values to evidence variables)
- Formally: determine $P(X \mid e)$ given query variables X, evidence variables E (and non-evidence or hidden variables Y)
- Example: $\mathrm{P}($ Burglary \mid JohnCalls $=$ true, MaryCalls $=$ true $)=$ $\langle 0.284,0.716\rangle$
- First we will discuss exact algorithms for computing posterior probabilities then approximate methods later

Inference by enumeration

- We have seen that any conditional probability can be computed from a full JPD by summing terms
- $\mathrm{P}(X \mid \mathrm{e})=\alpha \mathrm{P}(X, \mathrm{e})=\alpha \sum_{\mathrm{y}} \mathrm{P}(X, \mathrm{e}, \mathrm{y})$
- Since BN gives complete representation of full JPD, we must be able to answer a query by computing sums of products of conditional probabilities from the BN
- Consider query
$\mathrm{P}($ Burglary \mid JohnCalls $=$ true, MaryCalls $=$ true $)=\mathrm{P}(B \mid j, m)$
- $\mathrm{P}(B \mid j, m)=\alpha \mathrm{P}(B, j, m)=\alpha \sum_{e} \sum_{a} \mathrm{P}(B, e, a, j, m)$

Inference by enumeration

- Recall $P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- We can use CPTs to simplify this exploiting BN structure
- For Burglary = true:

$$
P(b \mid j, m)=\alpha \sum_{e} \sum_{a} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a)
$$

- But we can improve efficiency of this by moving terms outside that don't depend on sums

$$
P(b \mid j, m)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)
$$

- To compute this, we need to loop through variables in order and multiply CPT entries; for each summation we need to loop over variable's possible values

The variable enumeration algorithm

- Evaluation of expression shown in the following tree:

- But this enumeration method makes you compute the same thing several times;
e.g. $P(j \mid a) P(m \mid a)$ and $P(j \mid \neg a) P(m \mid \neg a)$ for each value of e

The variable elimination algorithm

- Idea of variable elimination: avoid repeated calculations
- Basic idea: store results after doing calculation once
- Works bottom-up by evaluating subexpressions
- Assume we want to evaluate

$$
\mathrm{P}(B \mid j, m)=\alpha \underbrace{P(B)}_{f_{1}(B)} \sum_{e} \underbrace{P(e)}_{f_{2}(E)} \sum_{a}^{P} \underbrace{P(a \mid B, e)}_{f_{3}(A, B, E)} \underbrace{P(j \mid a)}_{f_{4}(A)} \underbrace{P(m \mid a)}_{f_{5}(A)}
$$

- We've annotated each part with a factor.
- A factor is a matrix, indexed with its argument variables. E.g:
- Factor $f_{5}(A)$ corresponds to $P(m \mid a)$ and depends just on A because m is fixed (it's a 2×1 matrix).

$$
f_{5}(A)=\langle P(m \mid a), P(m \mid \neg a)\rangle
$$

- $\mathrm{f}_{3}(A, B, E)$ is a $2 \times 2 \times 2$ matrix for $\mathrm{P}(a \mid B, e)$

The variable elimination algorithm

$P(B \mid j, m)=\alpha f_{1}(B) \times \sum_{e} f_{2}(E) \sum_{a} f_{3}(A, B, E) \times f_{4}(A) \times f_{5}(A)$

- Summing out A produces a 2×2 matrix (via pointwise product):

$$
\begin{aligned}
f_{6}(B, E)= & \sum_{a} f_{3}(A, B, E) \times f_{4}(A) \times f_{5}(A) \\
= & \left(f_{3}(a, B, E) \times f_{4}(a) \times f_{5}(a)\right)+ \\
& \left(f_{3}(\neg a, B, E) \times f_{4}(\neg a) \times f_{5}(\neg a)\right)
\end{aligned}
$$

- So now we have

$$
\mathrm{P}(B \mid j, m)=\alpha \mathrm{f}_{1}(B) \times \sum_{e} \mathrm{f}_{2}(E) \times \mathrm{f}_{6}(B, E)
$$

- Sum out E in the same way:

$$
\mathrm{f}_{7}(B)=\left(\mathrm{f}_{2}(e) \times \mathrm{f}_{6}(B, e)\right)+\left(\mathrm{f}_{2}(\neg e) \times \mathrm{f}_{6}(B, \neg e)\right)
$$

- Using $f_{1}(B)=P(B)$, we can finally compute

$$
\mathrm{P}(B \mid j, m)=\alpha \mathrm{f}_{1}(B) \times \mathrm{f}_{7}(B)
$$

- Remains to define pointwise product and summing out

An example

- Pointwise product yields product for union of variables in its arguments:
$\mathrm{f}\left(X_{1} \ldots X_{i}, Y_{1} \ldots Y_{j}, Z_{1} \ldots Z_{k}\right)=\mathrm{f}_{1}\left(X_{1} \ldots X_{i}, Y_{1} \ldots Y_{j}\right) \mathrm{f}_{2}\left(Y_{1} \ldots Y_{j}, Z_{1} \ldots Z_{k}\right)$

A	B	$\mathrm{f}_{1}(A, B)$	B	C	$\mathrm{f}_{2}(B, C)$	A	B	C	$\mathrm{f}(A, B, C)$
T	T	0.3	T	T	0.2	T	T	T	0.3×0.2
T	F	0.7	T	F	0.8	T	T	F	0.3×0.8
F	T	0.9	F	T	0.6	T	F	T	0.7×0.6
F	F	0.1	F	F	0.4	T	F	F	0.7×0.4
						F	T	T	0.9×0.2
						F	T	F	0.9×0.8
						F	F	T	0.1×0.6
						F	F	F	0.1×0.4

- For example $f(T, T, F)=f_{1}(T, T) \times f_{2}(T, F)$

An example

- Summing out is similarly straightforward
- Trick: any factor that does not depend on the variable to be summed out can be moved outside the summation process
- For example

$$
\begin{aligned}
& \sum_{e} \mathrm{f}_{2}(E) \times \mathrm{f}_{3}(A, B, E) \times \mathrm{f}_{4}(A) \times \mathrm{f}_{5}(A) \\
& \quad=\mathrm{f}_{4}(A) \times \mathrm{f}_{5}(A) \times \sum_{e} \mathrm{f}_{2}(E) \times \mathrm{f}_{3}(A, B, E)
\end{aligned}
$$

- Matrices are only multiplied when we need to sum out a variable from the accumulated product

Another Example: $\mathrm{P}(J \mid b)=\langle P(j \mid b), P(\neg j \mid b)\rangle$

$$
\begin{aligned}
& \mathbf{P}(J \mid b)=\alpha \sum_{e} \sum_{a} \sum_{m} \mathbf{P}(J, b, e, a, m) \\
&=\alpha \sum_{e} \sum_{a} \sum_{m} P(b) P(e) P(a \mid b, e) \mathbf{P}(J \mid a) P(m \mid a) \\
&=\alpha^{\prime} \sum_{e} \underbrace{P(e)}_{f_{1}(E)} \sum_{a} \underbrace{P(a \mid b, e)}_{f_{2}(A, E)} \underbrace{P(J \mid a)}_{f_{3}(J, A)} \underbrace{\sum_{m}^{P} P(m \mid a)}_{=1} \\
&=\alpha^{\prime} \Sigma_{e} \mathbf{f}_{1}(E) \sum_{a} \mathbf{f}_{2}(A, E) \\
& \mathbf{f}_{3}(J, A) \\
&=\alpha^{\prime} \sum_{e} \mathbf{f}_{1}(E) \\
& \mathbf{f}_{4}(J, E) 2 \times 2 \\
& 2 \times 2 \\
&=\alpha^{\prime} f_{5}(J)
\end{aligned}
$$

Can eliminate all variables that aren't ancestors of query or evidence variables!

Summary

- Inference in Bayesian Networks
- Exact methods: enumeration, variable elimination algorithm
- Computationally intractable in the worst case
- Next time: Approximate inference in Bayesian Networks

