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Where are we?

Last time ...
o Introduced Bayesian networks
@ Allow for compact representation of JPDs
@ Methods for efficient representations of CPTs
o But how hard is inference in BNs?
Today ...

o Inference in Bayesian networks
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Example BN

@ New burglar alarm has been fitted, fairly reliable but
sometimes reacts to earthquakes

@ Neighbours John and Mary promise to call when they hear
alarm

o John sometimes mistakes phone for alarm, and Mary listens to

loud music and sometimes doesn’t hear alarm
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Inference in BNs

@ Basic task: compute posterior distribution for set of query
variables given some observed event (i.e. assignment of
values to evidence variables)

o Formally: determine P(X|e) given query variables X, evidence
variables E (and non-evidence or hidden variables Y)

o Example: P(Burglary|JohnCalls = true, MaryCalls = true) =
(0.284,0.716)

o First we will discuss exact algorithms for computing posterior
probabilities then approximate methods later
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Inference by enumeration

Inference by enumeration

@ We have seen that any conditional probability can be
computed from a full JPD by summing terms

o P(Xle) = aP(X,e)=aX,P(X,e,y)
@ Since BN gives complete representation of full JPD, we must

be able to answer a query by computing sums of products of
conditional probabilities from the BN

o Consider query
P(Burglary|JohnCalls = true, MaryCalls = true) = P(B|j, m)

° P(B’j’ m) = aP(B7.j’ m) = aZeZa P(B7e5 a7j7 m)
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Inference by enumeration

Inference by enumeration

o Recall P(x1,...,xn) =[17_1 P(xi|parents(X;))
@ We can use CPTs to simplify this exploiting BN structure
o For Burglary = true:

P(blj,m) = aZZP P(alb,e)P(jla)P(m|a)

@ But we can improve efficiency of this by moving terms outside
that don't depend on sums

P(blj,m) = aP(b)}_ P(e) ) P(alb.e)P(jla) P(m|a)

@ To compute this, we need to loop through variables in order
and multiply CPT entries; for each summation we need to loop
over variable's possible values
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The variable enumeration algorithm

The variable enumeration algorithm

o Evaluation of expression shown in the following tree:

P(jl~a) P(jl-a)
.05 05

P(m|-a) P(m|—a)
.01 .01

@ But this enumeration method makes you compute the same
thing several times;

e.g. P(j|la)P(m|a) and P(j|—a)P(m|—a) for each value of e
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The variable elimination algorithm

The variable elimination algorithm

Idea of variable elimination: avoid repeated calculations
Basic idea: store results after doing calculation once

Works bottom-up by evaluating subexpressions
Assume we want to evaluate

P(Blj,m ZP ZP a|B,e) P(j|a) P(m|a)

wE e namD nla

e 6 6 o

We've annotated each part with a factor.
A factor is a matrix, indexed with its argument variables. E.g:

o Factor f5(A) corresponds to P(ml|a) and depends just on A
because m is fixed (it's a 2 x 1 matrix).

fs(A) = (P(mla), P(m|=a))
o f3(A,B,E) is a 2 x2x 2 matrix for P(a|B,e)
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The variable elimination algorithm

The variable elimination algorithm

P(Blj,m) = afi(B) x Lef2(E) Laf3(A, B, E) x fa(A) x f5(A)
@ Summing out A produces a 2 X 2 matrix
(via pointwise product):
f6(87 E) = Zaf3(A7 B, E) X f4(A) X f5(A)
= (f3(a,B,E) xfa(a) x f5(a))+
(f3(—a, B, E) x f4(—a) x fs(—a))
@ So now we have
P(Blj,m) = afi(B) x Y.f2(E) x f6(B, E)
@ Sum out E in the same way:
£(8) = (fa(e) x fo( B, €)) + (Fa(~€) x fo( B, e)
e Using f;1(B) = P(B), we can finally compute

P(B|j,m) = afi(B) x f7(B)

@ Remains to define pointwise product and summing out
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The variable elimination algorithm

An example

o Pointwise product yields product for union of variables in its
arguments:

f(Xy. X Vi Y0 2y Z) =X X Ve YV Y 2y Zk)

A[B[f(AB)|[[B[C|R(B,C)[[A]B]|C]|fAB,C)
T[T| 03 |[T|T| 02 |[T|T|T|03x02
T|F| 07 |[T|F| 08 |[T|T|F|03x08
FIT| 09 |[F|T| 06 |[T|F|T|07x06
FIF| o1 |[F|F| 04 ||[T|F|F|07x04
FIT|T|09x02
FIT|F|09x038
FIF|T|01x06
FIF|F|01x04

o For example f(T,T,F) =1 (T, T)xf(T,F

~—
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The variable elimination algorithm

An example

@ Summing out is similarly straightforward

@ Trick: any factor that does not depend on the variable to be
summed out can be moved outside the summation process
@ For example

Zfz ) x f3(A, B, E) x f4(A) x f5(A)

:f4( )Xf5 Zfz E)Xf3(A B E)

@ Matrices are only multiplied when we need to sum out a
variable from the accumulated product
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The variable elimination algorithm

Another Example: P(J|b) = (P(j|b), P(—j|b))

P(J’b) = aZeZaZm P(J7 b7e)a7m) prod., marg.
= aY.Y.Y.,P(b)P(e)P(a|b,e)P(J|a)P(m]|a) cond. indep.
= o'Y. P(e) X, P(alb,e) P(J]a) ZP(m|a) move terms

—~— —_—— N —

f(E)  fo(AE) f3(J,A) ———

- aIZe fl(E) Za f2(A7E) f3(J7A)

2x1 2x2 2x2
= o'y fi(E) fa(J,E)

2x1 2x2
= OC/f5(J)

Can eliminate all variables that aren’t ancestors of query or
evidence variables!
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Summary

Inference in Bayesian Networks
Exact methods: enumeration, variable elimination algorithm
Computationally intractable in the worst case

Next time: Approximate inference in Bayesian Networks
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