Informatics 2D: Reasoning and Agents

Alex Lascarides

informátics

Lecture 24a: Exact Inference in Bayesian Networks Variable Enumeration

Where are we?

Last time ...

- Introduced Bayesian networks
- A compact representation of JPDs
- Methods for efficient representations of CPTs
- But how hard is inference in BNs ?

Today ...

- Inference in Bayesian networks

Inference in BNs

- Basic task: compute posterior distribution for set of query variables given some observed event (i.e. assignment of values to evidence variables)
- Formally: determine $\mathbf{P}(X \mid \mathbf{e})$ given query variables \mathbf{X}, evidence variables \mathbf{E} (and non-evidence or hidden variables \mathbf{Y})
- Example: $\mathbf{P}($ Burglary \mid JohnCalls $=$ true, MaryCalls $=$ true $)=$ $\langle 0.284,0.716\rangle$
- First we will discuss exact algorithms for computing posterior probabilities then approximate methods later

Inference by enumeration

- We have seen that any conditional probability can be computed from a full JPD by summing terms
- $\mathbf{P}(X \mid \mathbf{e})=\alpha \mathbf{P}(X, \mathbf{e})=\alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$
- Since BN gives complete representation of full JPD, we must be able to answer a query by computing sums of products of conditional probabilities from the BN
- Consider query $\mathbf{P}($ Burglary \mid JohnCalls $=$ true, MaryCalls $=$ true $)=\mathbf{P}(B \mid j, m)$
- $\mathrm{P}(B \mid j, m)=\alpha \mathrm{P}(B, j, m)=\alpha \sum_{e} \sum_{a} \mathrm{P}(B, e, a, j, m)$

Inference by enumeration

- Recall $P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- We can use CPTs to simplify this exploiting BN structure
- For Burglary = true:

$$
P(b \mid j, m)=\alpha \sum_{e} \sum_{a} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a)
$$

- But we can improve efficiency of this by moving terms outside that don't depend on sums

$$
P(b \mid j, m)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)
$$

- To compute this, we need to loop through variables in order and multiply CPT entries; for each summation we need to loop over variable's possible values

Example

- New burglar alarm has been fitted, fairly reliable but sometimes reacts to earthquakes
- Neighbours John and Mary promise to call when they hear alarm
- John sometimes mistakes phone for alarm, and Mary listens to loud music and sometimes doesn't hear alarm

The variable enumeration algorithm

- Enumeration method is computationally quite hard.
- You often compute the same thing several times; e.g. $P(j \mid a) P(m \mid a)$ and $P(j \mid \neg a) P(m \mid \neg a)$ for each value of e
- Evaluation of expression shown in the following tree:

Summary

- Variable enumeration: an exact inference in BNs
- Needless repetition of some calculations
- Next time: A (slightly) more efficient exact inference method

