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Lecture 24b: Exact Inference in Bayesian Networks
Variable elimination
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Where are we?

Last time. . .
Exact inference in BNs using variable enumeration
Algorithm repeats some calculations
We would like to avoid that!
Today: Exact inference in BNs using variable elimination
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Reminder of our example BN
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The variable elimination algorithm

Idea of variable elimination: avoid repeated calculations
Basic idea: store results after doing calculation once
Works bottom-up by evaluating subexpressions
Assume we want to evaluate

P(B|j ,m) = α P(B)︸ ︷︷ ︸
f1(B)

∑
e

P(e)︸︷︷︸
f2(E )

∑
a

P(a|B,e)︸ ︷︷ ︸
f3(A,B,E )

P(j |a)︸ ︷︷ ︸
f4(A)

P(m|a)︸ ︷︷ ︸
f5(A)

We’ve annotated each part with a factor.
A factor is a matrix, indexed with its argument variables. E.g:

Factor f5(A) corresponds to P(m|a) and depends just on A
because m is fixed (it’s a 2×1 matrix).

f5(A) = 〈P(m|a),P(m|¬a)〉

f3(A,B,E ) is a 2×2×2 matrix for P(a|B,e)
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The variable elimination algorithm

P(B|j ,m) = αf1(B)×∑e f2(E )∑a f3(A,B,E )× f4(A)× f5(A)
Summing out A produces a 2×2 matrix
(via pointwise product):
f6(B,E ) = ∑a f3(A,B,E )× f4(A)× f5(A)

= (f3(a,B,E )× f4(a)× f5(a))+
(f3(¬a,B,E )× f4(¬a)× f5(¬a))

So now we have
P(B|j ,m) = αf1(B)×∑e f2(E )× f6(B,E )
Sum out E in the same way:
f7(B) = (f2(e)× f6(B,e))+(f2(¬e)× f6(B,¬e))
Using f1(B) = P(B), we can finally compute

P(B|j ,m) = αf1(B)× f7(B)

Remains to define pointwise product and summing out
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An example

Pointwise product yields product for union of variables in its
arguments:

f(X1 . . .Xi ,Y1 . . .Yj ,Z1 . . .Zk) = f1(X1 . . .Xi ,Y1 . . .Yj )f2(Y1 . . .Yj ,Z1 . . .Zk)

A B f1(A,B) B C f2(B,C ) A B C f(A,B,C )
T T 0.3 T T 0.2 T T T 0.3 × 0.2
T F 0.7 T F 0.8 T T F 0.3 × 0.8
F T 0.9 F T 0.6 T F T 0.7 × 0.6
F F 0.1 F F 0.4 T F F 0.7 × 0.4

F T T 0.9 × 0.2
F T F 0.9 × 0.8
F F T 0.1 × 0.6
F F F 0.1 × 0.4

For example f(T ,T ,F ) = f1(T ,T )× f2(T ,F )
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An example

Summing out is similarly straightforward
Trick: any factor that does not depend on the variable to be
summed out can be moved outside the summation process
For example

∑
e

f2(E )× f3(A,B,E )× f4(A)× f5(A)

= f4(A)× f5(A)×∑
e

f2(E )× f3(A,B,E )

Matrices are only multiplied when we need to sum out a
variable from the accumulated product
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Another Example: P(J |b) = 〈P(j |b),P(¬j |b)〉

P(J|b) = α ∑e ∑a ∑mP(J,b,e,a,m) prod., marg.
= α ∑e ∑a ∑mP(b)P(e)P(a|b,e)P(J|a)P(m|a) cond. indep.
= α ′∑e P(e)︸︷︷︸

f1(E )

∑a P(a|b,e)︸ ︷︷ ︸
f2(A,E )

P(J|a)︸ ︷︷ ︸
f3(J,A)

∑
m

P(m|a)︸ ︷︷ ︸
= 1

move terms

= α ′∑e f1(E )
2×1

∑a f2(A,E )
2×2

f3(J,A)
2×2

= α ′∑e f1(E )
2×1

f4(J,E )
2×2

= α ′f5(J)

Can eliminate all variables that aren’t ancestors of query or
evidence variables!
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Inference in Bayesian Networks
Exact methods: enumeration, variable elimination algorithm
Computationally intractable in the worst case
Next time: Approximate inference in Bayesian Networks
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