Informatics 2D: Reasoning and Agents

Alex Lascarides

informátics

Lecture 24b: Exact Inference in Bayesian Networks Variable elimination

Where are we?

Last time. . .

- Exact inference in BNs using variable enumeration
- Algorithm repeats some calculations We would like to avoid that!
- Today: Exact inference in BNs using variable elimination

Reminder of our example BN

The variable elimination algorithm

- Idea of variable elimination: avoid repeated calculations
- Basic idea: store results after doing calculation once
- Works bottom-up by evaluating subexpressions
- Assume we want to evaluate

$$
\mathbf{P}(B \mid j, m)=\alpha \underbrace{\mathbf{P}(B)}_{\mathbf{f}_{1}(B)} \sum_{e} \underbrace{\mathbf{P}(e)}_{\mathbf{f}_{2}(E)} \sum_{a} \underbrace{\mathbf{P}(a \mid B, e)}_{\mathbf{f}_{3}(A, B, E)} \underbrace{P(j \mid a)}_{\mathbf{f}_{4}(A)} \underbrace{P(m \mid a)}_{\mathbf{f}_{5}(A)}
$$

- We've annotated each part with a factor.
- A factor is a matrix, indexed with its argument variables. E.g:
- Factor $\mathbf{f}_{5}(A)$ corresponds to $P(m \mid a)$ and depends just on A because m is fixed (it's a 2×1 matrix).

$$
\mathbf{f}_{5}(A)=\langle P(m \mid a), P(m \mid \neg a)\rangle
$$

- $\mathbf{f}_{3}(A, B, E)$ is a $2 \times 2 \times 2$ matrix for $\mathbf{P}(a \mid B, e)$

The variable elimination algorithm

$\mathrm{P}(B \mid j, m)=\alpha \mathrm{f}_{1}(B) \times \sum_{e} \mathrm{f}_{2}(E) \sum_{\mathrm{a}} \mathrm{f}_{3}(A, B, E) \times \mathrm{f}_{4}(A) \times \mathrm{f}_{5}(A)$

- Summing out A produces a 2×2 matrix (via pointwise product):

$$
\begin{aligned}
\mathbf{f}_{6}(B, E)= & \sum_{a} \mathbf{f}_{3}(A, B, E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A) \\
= & \left(\mathbf{f}_{3}(a, B, E) \times \mathbf{f}_{4}(a) \times \mathbf{f}_{5}(a)\right)+ \\
& \left(\mathbf{f}_{3}(\neg a, B, E) \times \mathbf{f}_{4}(\neg a) \times \mathbf{f}_{5}(\neg a)\right)
\end{aligned}
$$

- So now we have

$$
\mathbf{P}(B \mid j, m)=\alpha \mathbf{f}_{1}(B) \times \sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{6}(B, E)
$$

- Sum out E in the same way:
$\mathbf{f}_{7}(B)=\left(\mathbf{f}_{2}(e) \times \mathbf{f}_{6}(B, e)\right)+\left(\mathbf{f}_{2}(\neg e) \times \mathbf{f}_{6}(B, \neg e)\right)$
- Using $f_{1}(B)=P(B)$, we can finally compute

$$
\mathbf{P}(B \mid j, m)=\alpha \mathbf{f}_{1}(B) \times \mathbf{f}_{7}(B)
$$

- Remains to define pointwise product and summing out

An example

- Pointwise product yields product for union of variables in its arguments:

$$
\mathbf{f}\left(X_{1} \ldots X_{i}, Y_{1} \ldots Y_{j}, Z_{1} \ldots Z_{k}\right)=\mathbf{f}_{1}\left(X_{1} \ldots X_{i}, Y_{1} \ldots Y_{j}\right) \mathbf{f}_{2}\left(Y_{1} \ldots Y_{j}, Z_{1} \ldots Z_{k}\right)
$$

A	B	$\mathbf{f}_{1}(A, B)$	B	C	$\mathbf{f}_{2}(B, C)$	A	B	C	$\mathbf{f}(A, B, C)$
T	T	0.3	T	T	0.2	T	T	T	0.3×0.2
T	F	0.7	T	F	0.8	T	T	F	0.3×0.8
F	T	0.9	F	T	0.6	T	F	T	0.7×0.6
F	F	0.1	F	F	0.4	T	F	F	0.7×0.4
						F	T	T	0.9×0.2
						F	T	F	0.9×0.8
						F	F	T	0.1×0.6
						F	F	F	0.1×0.4

- For example $\mathbf{f}(T, T, F)=\mathbf{f}_{1}(T, T) \times \mathbf{f}_{2}(T, F)$

An example

- Summing out is similarly straightforward
- Trick: any factor that does not depend on the variable to be summed out can be moved outside the summation process
- For example

$$
\begin{aligned}
& \sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{3}(A, B, E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A) \\
& \quad=\mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A) \times \sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{3}(A, B, E)
\end{aligned}
$$

- Matrices are only multiplied when we need to sum out a variable from the accumulated product

Another Example: $\mathrm{P}(J \mid b)=\langle P(j \mid b), P(\neg j \mid b)\rangle$

$$
\begin{array}{rl}
\mathbf{P}(J \mid b) & =\alpha \sum_{e} \sum_{a} \sum_{m} \mathbf{P}(J, b, e, a, m) \\
& =\alpha \sum_{e} \sum_{a} \sum_{m} P(b) P(e) P(a \mid b, e) \mathbf{P}(J \mid a) P(m \mid a) \\
& =\alpha^{\prime} \sum_{e} \underbrace{P(e)}_{\mathbf{f}_{1}(E)} \sum_{a} \underbrace{P(a \mid b, e)}_{\mathbf{f}_{2}(A, E)} \underbrace{P(J \mid a)}_{\mathbf{f}_{3}(J, A)} \underbrace{\sum_{m}^{P} P(m \mid a)}_{=1} \\
& =\alpha^{\prime} \sum_{e} \mathbf{f}_{1}(E) \sum_{a} \mathbf{f}_{2}(A, E) \\
\mathbf{f}_{3}(J, A) \\
& =\alpha^{\prime} \sum_{e} \mathbf{f}_{1}(E) \\
\mathbf{f}_{4}(J, E) & 2 \times 2 \\
2 \times 2 & 2 \times 1 \\
& =\alpha^{\prime} \mathbf{f}_{5}(J)
\end{array}
$$

Can eliminate all variables that aren't ancestors of query or evidence variables!

Summary

- Inference in Bayesian Networks
- Exact methods: enumeration, variable elimination algorithm
- Computationally intractable in the worst case
- Next time: Approximate inference in Bayesian Networks

