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Where are we?

Last time ...
@ Inference in Bayesian Networks
@ Exact methods: enumeration, variable elimination algorithm
o Computationally intractable in the worst case

Today ...

o Approximate Inference in Bayesian Networks
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Approximate inference in BNs

@ Exact inference computationally very hard

o Approximate methods important, here randomised sampling
algorithms

e Monte Carlo algorithms

o We will talk about two types of MC algorithms:

© Direct sampling methods
@ Markov chain sampling
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Direct sampling methods

Rejection sampling

Direct sampling methods

o Basic idea: generate samples from a known probability
distribution

o Consider an unbiased coin as a random variable — sampling
from the distribution is like flipping the coin

o It is possible to sample any distribution on a single variable
given a set of random numbers from [0,1]

@ Simplest method: generate events from network without
evidence

o Sample each variable in ‘topological order’
o Probability distribution for sampled value is conditioned on
values assigned to parents
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Direct sampling methods

Rejection sampling

o Consider the following BN and ordering
[Cloudy, Sprinkler, Rain, WetGrass|:
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Direct sampling methods

Rejection sampling

o Direct sampling process:

o Sample from P(Cloudy) = (0.5,0.5), suppose this returns true

o Sample from P(Sprinkler|Cloudy = true) = (0.1,0.9), suppose
this returns false

o Sample from P(Rain|Cloudy = true) = (0.8,0.2),
suppose this returns true

o Sample from
P(WetGrass|Sprinkler = false, Rain = true) = (0.9,0.1),
suppose this returns true

o Event returned=(true, false, true, true]
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Direct sampling methods

Rejection sampling

Direct sampling methods

@ Generates samples with probability S(xi,...,x,)

n

S(x1,..oyxn) = P(x1,...,%p) = HP(X;|parents(X,-))
i=1
i.e. in accordance with the distribution
@ Answers are computed by counting the number N(xi,...,x,)
of the times event xi,...,x, was generated and dividing by
total number N of all samples
@ In the limit, we should get

. N(xg,...,x
lim MO, Xn) =5S(x1,...,xn) = P(x1,...,xn)
n—yoo

o If the estimated probability P becomes exact in the limit we

call the estimate consistent and we write “~" in this sense,

e.g. P(x1,...,%n) = N(x1,...,xn)/N
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Direct sampling methods

Rejection sampling

Rejection sampling

@ Purpose: to produce samples for hard-to-sample distribution
from easy-to-sample distribution

o To determine P(X|e) generate samples from the prior
distribution specified by the BN first

@ Then reject those that do not match the evidence

o The estimate P(X = x|e) is obtained by counting how often
X = x occurs in the remaining samples

@ Rejection sampling is consistent because, by definition:

P(Xle) = N/(\/)(Z;) ~ Pl(j((é)e) —P(XJe)
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Direct sampling methods

Rejection sampling

Back to our example

o Assume we want to estimate P(Rain|Sprinkler = true), using
100 samples

o 73 have Sprinkler = false (rejected), 27 have Sprinkler = true
o Of these 27, 8 have Rain = true and 19 have Rain = false

o P(Rain|Sprinkler = true) ~ 0.(8,19) = (0.296,0.704)
@ True answer would be (0.3,0.7)

@ But the procedure rejects too many samples that are not
consistent with e (exponential in number of variables)

o Not really usable (similar to naively estimating conditional
probabilities from observation)
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Likelihood weighting

Likelihood weighting

o A direct sampling method that avoids inefficiency of rejection
sampling,
by generating only samples consistent with evidence

o Fixes the values for evidence variables E and samples only the
remaining variables X and Y

@ Since not all events are equally probable, each event has to be
weighted by its likelihood that it accords to the evidence

o Likelihood is measured by product of conditional probabilities
for each evidence variable, given its parents
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Likelihood weighting

Likelihood weighting

o Consider query P(Rain|Sprinkler = true, WetGrass = true) in
our example; initially set weight w = 1, then event is
generated:

o Sample from P(Cloudy) = (0.5,0.5), suppose this returns true
o Sprinkler is evidence variable with value true, we set

w < w x P(Sprinkler = true|Cloudy = true) = 0.1
o Sample from P(Rain|Cloudy = true) = (0.8,0.2), suppose this

returns true
o WetGrass is evidence variable with value true, we set

w < w x P(WetGrass = true|Sprinkler = true, Rain = true) = 0.099

o Sample returned=[true, true, true, true| with weight 0.099
tallied under Rain = true
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Likelihood weighting

Likelihood weighting — why it works

o S(z,e) =T[1'_, P(zi|parents(Z;))
@ S's sample values for each Z; is influenced by the evidence
among Z;'s ancestors

@ But S pays no attention when sampling Z;'s value to evidence
from Z;'s non-ancestors; so it's not sampling from the true
posterior probability distribution!

o But the likelihood weight w makes up for the difference
between the actual and desired sampling distributions:

m

w(z,e) = H P(ej|parents(E;))

i=1

1
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Likelihood weighting

Likelihood weighting — why it works

@ Since two products cover all the variables in the network, we
can write

/ m

P(z,e) = H P(zi|parents(Z;)) H P(e;|parents(E;))

i=1 i=1

S(z,e) w(z,e)

o With this, it is easy to derive that likelihood weighting is
consistent (tutorial exercise)

o Problem: most samples will have very small weights as the
number of evidence variables increases
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Inference by Markov chain simulation

The Markov chain Monte Carlo (MCMC) algorithm

o MCMC algorithm: create an event from a previous event,
rather than generate all events from scratch

o Helpful to think of the BN as having a current state
specifying a value for each variable

o Consecutive state is generated by sampling a value for one of
the non-evidence variables X; conditioned on the current
values of variables in the Markov blanket of X;

o Recall that Markov blanket consists of parents, children, and
children’s parents

@ Algorithm randomly wanders around state space flipping one
variable at a time and keeping evidence variables fixed
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Inference by Markov chain simulation

The MCMC algorithm

o Consider query P(Rain|Sprinkler = true, WetGrass = true)
once more

o Sprinkler and WetGrass (evidence variables) are fixed to their
observed values, hidden variables Cloudy and Rain are
initialised randomly (e.g. true and false)

o Initial state is [true, true, false, true]

o Execute repeatedly:

o Sample Cloudy given values of Markov blanket, i.e. sample
from P(Cloudy|Sprinkler = true, Rain = false)

o Suppose result is false, new state is [false, true, false, true]

o Sample Rain given values of Markov blanket, i.e. sample from
P(Rain|Sprinkler = true, Cloudy = false, WetGrass = true)

o Suppose we obtain Rain = true, new state
[false, true, true, true]
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Inference by Markov chain simulation

The MCMC algorithm — why it works

o Each state is a sample, contributes to estimate of query
variable Rain (count samples to compute estimate as before)

o Basic idea of proof that MCMC is consistent:
The sampling process settles into a “dynamic equilibrium”
in which the long-term fraction of time spent in each state
is exactly proportional to its posterior probability

@ MCMC is a very powerful method used for all kinds of things
involving probabilities
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Summary
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Approximate inference in BN's
Direct sampling methods

Likelihood working and why it works
MCMC algorithm and why it works

Next time: Time and Uncertainty |
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